
Copyright 2013 Cirrus Logic, Inc. SEP 2013
DS795UM11

A Programming Tool for
Cirrus Logic 32-Bit Audio DSPs

Preliminary Product Information
This document contains information for a new product.
Cirrus Logic reserves the right to modify this product without notice.

http://www.cirrus.com

Cirrus Logic 32-bit DSP Assembly
Programmer’s Guide

32-bit DSP Assembly Programmer’s Guide
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find one nearest you go to www.cirrus.com

IMPORTANT NOTICE

“Preliminary” product information describes products that are in production, but for which full characterization data is not yet available.

Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives
consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS OR OTHER
CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE SAFETY OR SE-
CURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIR-
RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR
CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO
FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUD-
ING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Microwire is a trademark of National Semiconductor Corp. National Semiconductor is a registered trademark of National Semiconductor Corp.

Texas Instruments is a registered trademark of Texas Instruments, Inc.

Motorola is a registered trademark of Motorola, Inc.

LINUX is a registered trademark of Linus Torvalds.
ii Copyright 2013 Cirrus Logic, Inc. DS795UM11

http://www.cirrus.com

32-bit DSP Assembly Programmer’s Guide
Contents
 Contents . 1-iii

Chapter 1. Cirrus Logic Assembly Program (CASM) ...1-1
 1.1 Welcome to CASM .1-1
 1.2 Accessing CASM Through the CLIDE GUI .1-2
 1.3 Accessing CASM Through the Assembler Command Line .1-2

 1.3.1 Command Line Format...1-2
 1.3.2 Command Line Options..1-3
 1.3.3 Command Line Examples ..1-4

 1.4 Assembly Language Format .1-5
 1.4.1 Code Line Format...1-5
 1.4.2 Comment Character ...1-5
 1.4.3 Case Sensitivity ..1-5
 1.4.4 Symbol Definition..1-5
 1.4.5 Local Symbol Definition and Use..1-6
 1.4.6 Expressions ..1-6

 1.4.6.1 Floating-point Expressions ..1-7
 1.4.6.2 Address Expressions ...1-7

 1.4.7 Constants ...1-7
 1.4.7.1 Floating Point Literals ..1-7
 1.4.7.2 Integer Literals ...1-8
 1.4.7.3 String Literals...1-8

 1.4.8 Unary Operators ...1-9
 1.4.9 Binary Operators ..1-9

 1.4.9.1 Precedence of Operators...1-10
 1.4.10 Expression Examples ...1-10
 1.4.11 Built-in Functions ..1-10
 1.4.12 Mathematical Functions..1-11
 1.4.13 Conversion Functions...1-13
 1.4.14 String Functions..1-14
 1.4.15 Assembler Directives..1-14

 1.4.15.1 Code Modularity...1-15
 1.4.15.2 Memory Segments...1-15
 1.4.15.3 Symbol Assignment ...1-16
 1.4.15.4 Data Memory Assignment ...1-16
 1.4.15.5 Conditional Assembly ..1-18
 1.4.15.6 Token Substitution ...1-19
 1.4.15.7 Listing and Message Control ...1-20
 1.4.15.8 Assembler Warning/Error Control ..1-20
 1.4.15.9 Define .struct Type...1-21
 1.4.15.10 Sizeof Function ..1-24
 1.4.15.11 Assert Directive..1-24

 1.4.16 Macro Definition and Calling...1-25
 1.4.17 Macro Replication...1-27
 1.4.18 Assembly Language Example ..1-28

Chapter 2. 32-Bit DSP Internal Architecture
and Programming Model ..2-1

 2.1 Overview .2-1
 2.2 Data Path and Accumulators Unit .2-2
DS795UM11 Copyright 2013 Cirrus Logic, Inc. iii

32-bit DSP Assembly Programmer’s Guide
 2.2.1 Data Representation...2-4
 2.2.2 Accumulator Data Transfers...2-6

 2.2.2.1 Move to Accumulator ...2-7
 2.2.2.2 Moving from Accumulator ..2-8
 2.2.2.3 Saturation Examples..2-9
 2.2.2.4 Rounding Examples...2-9
 2.2.2.5 Shifting Examples ..2-10

 2.3 Parallel Address Generation Unit .2-10
 2.3.1 Addressing Modes..2-12

 2.3.1.1 Modulo Addressing ..2-12
 2.3.1.2 Reverse Binary Addressing ...2-13
 2.3.1.3 Immediate Addressing ...2-14
 2.3.1.4 Indexed Addressing ...2-14

 2.4 Program Control Unit. .2-17
 2.4.1 Program Counter ..2-17
 2.4.2 Subroutine Stack ..2-17
 2.4.3 Loop Stack..2-17
 2.4.4 Subroutine Stack and Loop Stack Common Implementations2-18
 2.4.5 jsr_mode Register ...2-19
 2.4.6 lst_mode Register...2-20
 2.4.7 stq_base Register ..2-21
 2.4.8 mr_jsr_ptr Register ...2-21
 2.4.9 jsr_data Register ..2-21
 2.4.10 mr_lst_ptr Register ...2-21
 2.4.11 lp_data1 Register ...2-22
 2.4.12 lp_data2 Register ...2-22
 2.4.13 lst_data1 Register...2-23
 2.4.14 lst_data2 Register...2-23
 2.4.15 jsr_ovf Register...2-23
 2.4.16 jsr_unf Register ..2-24
 2.4.17 lst_ovf Register...2-24
 2.4.18 lst_unf Register...2-24
 2.4.19 Mode Register ..2-24
 2.4.20 Condition Code Register ..2-25
 2.4.21 Loop Stack Example...2-26

 2.5 Master State Registers (MSREGS) .2-33
 2.5.1 Search Registers ..2-34
 2.5.2 Random Number Generator ...2-34

 2.6 Interrupt Controller .2-35
 2.6.1 Fast Interrupts ..2-35
 2.6.2 Long Interrupts ...2-35
 2.6.3 Masking ..2-35

 2.6.3.1 IMask ...2-36
 2.6.3.2 IRMask...2-36

 2.7 Instruction Restrictions. .2-36
 2.7.1 Code Example, Broken Code ...2-37
 2.7.2 Code Example, Fixed Code..2-37

 2.8 LogExp .2-37

Chapter 3. Full Word Instructions..3-1
 3.1 Assembly Language Syntax .3-1
 3.2 Conventions .3-2
iv Copyright 2013 Cirrus Logic, Inc. DS795UM11

32-bit DSP Assembly Programmer’s Guide
 3.3 Execution Control Instructions. .3-2
 3.3.1 do - Start Hardware Loop ...3-2
 3.3.2 enddo - End Current Do-Loop ..3-3
 3.3.3 do_patch - Jump to Patch...3-4
 3.3.4 jmp - Jump..3-5
 3.3.5 if - Jump Conditionally ..3-6
 3.3.6 call - Jump To Subroutine...3-7
 3.3.7 callint - Answer Interrupt...3-8
 3.3.8 callint_stq - Answer Stack Interrupt ..3-8
 3.3.9 ret - Return From Subroutine..3-8
 3.3.10 retint - Return From Interrupt..3-9
 3.3.11 retint_stq - Return From Stack Interrupt ...3-9
 3.3.12 inten - Enable Interrupts ...3-9
 3.3.13 intdis - Disable Interrupts..3-10
 3.3.14 halt - Stop Further Execution..3-10
 3.3.15 nop - No Operation ...3-10
 3.3.16 _breakpt - Breakpoint Instruction..3-11

 3.4 64-bit Peripheral Moves. .3-12
 3.4.1 XY Register Pair = ext(16-bit Address) ..3-12
 3.4.2 Accum = ext(16-bit Address) ..3-12
 3.4.3 ext(16-bit Address) = XY Register Pair ..3-13
 3.4.4 ext(16-bit Address) = Accum ..3-13
 3.4.5 logexp = XY Register Pair ..3-14
 3.4.6 XY Register Pair = logexp ..3-16

 3.5 Memory Moves - Direct .3-16
 3.5.1 Any Reg = xmem[16-bit Address]...3-16
 3.5.2 xmem[16-bit Address] = Any Reg...3-17
 3.5.3 Any Reg = ymem[16-bit Address]...3-18
 3.5.4 ymem[16-bit Address] = Any Reg...3-19
 3.5.5 Any Reg = pmem[16-bit Address] ..3-20
 3.5.6 pmem[16-bit Address] = Any Reg ..3-21
 3.5.7 Any Reg = inp[16-bit Address]..3-22
 3.5.8 outp[16-bit Address] = Any Reg ...3-23
 3.5.9 Any Reg = xmem[Index Register]...3-24
 3.5.10 xmem[Index Register] = Any Reg...3-25
 3.5.11 Any Reg = ymem[Index Register]...3-26
 3.5.12 ymem[Index Register] = Any Reg...3-27
 3.5.13 Any Reg = pmem[Index Register] ..3-28
 3.5.14 pmem[Index Register] = Any Reg ..3-29
 3.5.15 outp[Index Register] = Any Reg ...3-30
 3.5.16 Any Reg = inp[Index Register]..3-31

 3.6 Immediate Register Moves .3-33
 3.6.1 fixed16(Destination) = (16-bit Data) ...3-34
 3.6.2 ufixed16(Destination) = (16-bit Data) ...3-34
 3.6.3 uhalfword(Destination) = (16-bit Data) ...3-35
 3.6.4 Index Register = (16-bit Data) ..3-36
 3.6.5 NM Register = (16-bit Data) ...3-36
 3.6.6 Guard Register = (8-bit Data) ...3-36
 3.6.7 halfword(Destination) = (16-bit Data) ...3-37
 3.6.8 lo16(Destination) = (16-bit Data) ..3-38
 3.6.9 MS Reg = (16-bit Data) ..3-38
DS795UM11 Copyright 2013 Cirrus Logic, Inc. v

32-bit DSP Assembly Programmer’s Guide
 3.6.10 AnyReg(Any Reg, Any Reg)...3-39
 3.6.11 Any Reg = MS Reg...3-40
 3.6.12 MS Reg = Any Reg...3-41
 3.6.13 AnyReg (Any Reg, Any Reg), (Any Reg, Any Reg)..3-42
 3.6.14 Accum = long(Accum) ..3-43
 3.6.15 In = Im/(0) ± (16-bit Data) ...3-44

 3.7 Bit Manipulation Instructions .3-45
 3.7.1 Bit Test ...3-45
 3.7.2 Bit Set ...3-46
 3.7.3 Bit Clear..3-47
 3.7.4 Bit Change..3-48

Chapter 4. Multifunction Moves ...4-1
 4.1 Single Multifunction Moves. .4-1

 4.1.1 DP Reg = xmem[Index Register]
DP Reg = xmem[6-bit Address] ..4-1
 4.1.2 xmem[Index Register] = DP Reg
xmem[6-bit address] = DP Reg ..4-2
 4.1.3 DP Reg = ymem[Index Register]
DP Reg = ymem[6-bit address] ..4-3
 4.1.4 ymem[Index Register] = DP Reg
ymem[6-bit address] = DP Reg ..4-4
 4.1.5 Data Path Register to or from Any Register ...4-5

 4.1.5.1 DP Reg = Any Reg ..4-5
 4.1.5.2 Any Reg = DP Reg ..4-6

 4.2 Parallel Multifunction Move Instructions .4-10
 4.2.1 Xn = xmem[Index Register] ..4-10
 4.2.2 xmem[Index Register] = An ..4-11
 4.2.3 Ym = ymem[Index Register] ...4-12
 4.2.4 ymem[Index Register] = Bm ...4-12

 4.3 Data Path Register to Data Path Register Instructions .4-13
 4.3.1 DP Reg = DP Reg ..4-14

 4.4 Parallel Register to/from Register Instructions. .4-14
 4.4.1 Data Path Register to Data Path Register and
Data Path Register to/from X or Y Memory Restrictions ..4-15

 4.5 64-bit Multifunction Moves .4-16
 4.5.1 Data Path Register Pair to or from XY Memory..4-16

 4.5.1.1 Data Path Register Pair = xymem[Index Register]
Data Path Register Pair = xymem[6-bit Address] ...4-16
 4.5.1.2 xymem[Index Register] = Data Path Register Pair
xymem[6-bit Address] = Data Path Register Pair ...4-17

 4.5.2 Accumulator to or from XY Memory ...4-18
 4.5.2.1 Accum = xymem[Index Register]
Accum = xymem[6-bit Address] ..4-18
 4.5.2.2 xymem[Index Register] = Accum
xymem[6-bit Address] = Accum..4-18

 4.6 Index Register Updates .4-19
 4.6.1 In = Im ± (6-bit Data)...4-19
 4.6.2 In ±= 1/2/N..4-20

Chapter 5. Multifunction Operations ...5-1
 5.1 Multifunction Arithmetic Instructions .5-1
vi Copyright 2013 Cirrus Logic, Inc. DS795UM11

32-bit DSP Assembly Programmer’s Guide
 5.1.1 Parallel Multiply/Multiply-Accumulate I ...5-1
 5.1.2 Parallel Multiply/Multiply-Accumulate II ..5-2
 5.1.3 Real Multiply/Multiply-Accumulate..5-3
 5.1.4 Parallel Squares ...5-4
 5.1.5 Parallel Multiply with Add..5-5
 5.1.6 Multiply by One with Optional Accumulate ...5-5
 5.1.7 Parallel Multiply by One with Optional Accumulate ..5-6

 5.2 Multifunction Accumulator Instructions .5-7
 5.2.1 Parallel Add with Shift...5-7
 5.2.2 Add with Shift..5-7
 5.2.3 Conditional Operation - Maximum ..5-8
 5.2.4 Conditional Operation - Minimum ...5-9
 5.2.5 Conditional Operation - Absolute Value Maximum...5-9
 5.2.6 Conditional Operation - Absolute Value Minimum..5-10
 5.2.7 Bitwise Accumulator Move ...5-10
 5.2.8 Parallel Bitwise Accumulator Move ..5-11
 5.2.9 Bitwise Complement...5-12
 5.2.10 Parallel Bitwise Complement..5-12
 5.2.11 AccumNegative Accumulator Move..5-13
 5.2.12 Parallel Negative Accumulator Move..5-13
 5.2.13 Absolute Value Accumulator Move...5-14
 5.2.14 Parallel Absolute Value Accumulator Move..5-14
 5.2.15 Bitwise OR..5-15
 5.2.16 Parallel Bitwise OR...5-15
 5.2.17 Bitwise Exclusive OR..5-16
 5.2.18 Parallel Bitwise Exclusive OR...5-16
 5.2.19 Bitwise AND..5-17
 5.2.20 Parallel Bitwise AND...5-17
 5.2.21 Bitwise Zero..5-18
 5.2.22 Parallel Bitwise Zero...5-18
 5.2.23 Bitwise Shift Left by One ..5-19
 5.2.24 Parallel Bitwise Shift Left by One ...5-19
 5.2.25 Bitwise Shift Left by Four..5-19
 5.2.26 Parallel Bitwise Shift Left by Four...5-20
 5.2.27 Bitwise Shift Left by Eight ...5-20
 5.2.28 Parallel Bitwise Shift Left by Eight ..5-21
 5.2.29 Bitwise Shift Right by One ..5-21
 5.2.30 Parallel Bitwise Shift Right by One ...5-22
 5.2.31 Bitwise Test ..5-22
 5.2.32 Parallel Bitwise Test ...5-23
 5.2.33 Bitwise Compare ..5-23
 5.2.34 Parallel Bitwise Compare ...5-24
 5.2.35 Bitwise Absolute Value Compare ...5-24
 5.2.36 Parallel Bitwise Absolute Value Compare ..5-25

Chapter A. Glossary ... A-1

Chapter B. List of Instructions by Category and Flag Reference B-1
Table B-1. Revision History . B-4
DS795UM11 Copyright 2013 Cirrus Logic, Inc. vii

32-bit DSP Assembly Programmer’s Guide
Figures
 Figure 2-1. Cirrus Logic 32-Bit Architecture ..2-1

 Figure 2-2. Data Flow within Data Path and Accumulators Unit ...2-2

 Figure 2-3. Data Path Registers..2-3

 Figure 2-4. 32-bit Fractional Representation...2-5

 Figure 2-5. 64-bit Fractional Representation...2-5

 Figure 2-6. 72-bit Fractional Representation...2-5

 Figure 2-7. Integer vs. Fractional Multiplication...2-6

 Figure 2-8. Positive 32-bit Value ...2-7

 Figure 2-9. Negative 32-bit Value..2-7

 Figure 2-10. Positive Saturation: x0=a0 ..2-9

 Figure 2-11. Rounding Example: Negative Saturation: x0=a0 ..2-9

 Figure 2-12. No Saturation: x0=a0 ..2-9

 Figure 2-13. Data Flow for the Parallel Address Generation Unit ...2-11

 Figure 2-14. Execute Phase vs. Decode Phase Assignments ..2-17

 Figure 2-15. Loop Stack Overflow Example..2-28

 Figure 2-16. Loop Stack Underflow Example..2-29

 Figure 3-1. Assembler Example: 32-bit Instruction Word..3-1

Tables
Table 1-1 Command Line Options ..1-3

Table 1-2 Unary Operators..1-9

Table 1-3 Binary Operators ...1-9

Table 1-4 Precedence of Operators ..1-10

Table 1-5 Expression Examples..1-10

Table 1-6 Built-in Functions...1-10

Table 1-7 Mathematical Functions ..1-11

Table 1-8 Conversion Functions ...1-13

Table 1-9 String Functions ..1-14

Table 1-10 Macros ..1-15

Table 1-11 Symbol Assignment ..1-16

Table 1-12 Data Memory Assignment...1-16

Table 1-13 Conditional Assembly Directives...1-18

Table 1-14 Listing Control Switches..1-20

Table 1-15 Special Characters Used in Macros..1-26

Table 2-1. Result of x0=a0 for a Given Rounding Mode (Shifting Off) ..2-9

Table 2-2. Result of x0=a0 for a Given Shifting Mode with Rounding Set to Truncate (off)........................2-10
viii Copyright 2013 Cirrus Logic, Inc. DS795UM11

32-bit DSP Assembly Programmer’s Guide
Table 2-3. Result of x0=a0 for a Given Shifting Mode with Rounding Set to Add ½ then Truncate............2-10

Table 2-4. Result of x0=a0 for a Given Shifting Mode with Rounding Set to Round to Zero2-10

Table 2-5. Index Registers ..2-12

Table 2-6. Increment-Modulo Registers ..2-12

Table 2-7. Addressing Modes, Defined by the NM Registers ...2-13

Table 2-8. jsr_mode Bit Definitions ...2-19

Table 2-9. lst_mode Bit Definitions..2-20

Table 2-10. stq_base Bit Definitions..2-21

Table 2-11. mr_jsr_ptr Bit Definitions ..2-21

Table 2-12. jsr_data Bit Definitions ...2-21

Table 2-14. lp_data1 Bit Definitions ..2-22

Table 2-15. lp_data2 Bit Definitions ..2-22

Table 2-13. mr_lst_ptr Bit Definitions ..2-22

Table 2-16. lst_data1 Bit Definitions..2-23

Table 2-17. lst_data2 Bit Definitions..2-23

Table 2-18. jsr_ovf Bit Definitions..2-23

Table 2-19. jsr_unf Bit Definitions ...2-24

Table 2-20. lst_ovf Bit Definitions..2-24

Table 2-21. lst_unf Bit Definitions..2-24

Table 2-23. Condition Code Register Bit Definitions ...2-25

Table 2-22. Mode Register Bit Definitions...2-25

Table 2-24. T1, T0 with Various Accum + Shift Values...2-26

Table 2-25. Master State Registers...2-33

Table 2-26. Writing to the LogExp Peripheral ...2-38

Table 2-27. Command Operations ..2-38

Table 2-28. X Input Mux ..2-38

Table 2-29. Y Input Mux ..2-38

Table 3-1. Syntax Terms Used in this Manual ..3-2

Table 3-2. 72-bit Accumulators ...3-33

Table 3-3. 32-bit Data Registers ...3-33

Table A-1. Glossary Terms .. A-1

Table B-1. Instruction / Flag Reference Table.. B-1
DS795UM11 Copyright 2013 Cirrus Logic, Inc. ix

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 Chapter 1

1Cirrus Logic Assembly Program (CASM)

 1.1 Welcome to CASM
The Cirrus Logic Cross-assembler (CASM) application was originally used by software
developers at Cirrus Logic for over 10 years to implement custom DSP audio algorithms on
the Cirrus Logic 32-bit DSP core-based platforms such as the CS4953xx, CS4970x4,
CS485xx, CS470xx, and the CS498xx multicore DSPs.

Cirrus Logic offers CASM as part of the Cirrus Logic Integrated Development Environment
(CLIDE) that is available to Cirrus Logic customers to develop their own custom audio
algorithms to run on Cirrus Logic DSPs.

Note: The Cirrus Device Manager (CDM) must be running to use the CLIDE tool set. After
the SDK for the Cirrus DSP used in the customer’s design is launched, CDM should launch
automatically. CDM provides communication between CLIDE and the board and simulator.

The CLIDE tool set includes:

• CLIDE’s graphical user interface (GUI) is described in the CLIDE User’s Manual and
allows the user to access the following applications from CLIDE:

• CASM—described in this manual.

• Cirrus Logic C-Compiler—described in the Cirrus Logic C-Compiler User’s Manual.

• CLIDE debugger—described in the CLIDE User’s Manual; debugs both Assembly
and C language source files, and replaces the Hydra debugger.

• Cirrus Linker (CLINK)—described in the CLINK User’s Manual; takes one or more
object files as input and creates binary file(s) suitable for loading.

• Primitive Elements Wizard—described in the CLIDE User’s Manual and is an XML
file wizard used to create custom primitives that are debugged within CLIDE.

• Simulator—described in the CLIDE User’s Manual.

• Source editor—described in the CLIDE User’s Manual.
DS795UM11 1-1
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.2 Accessing CASM Through the CLIDE GUI
Most users access CASM through the CLIDE GUI, which is described fully in the CLIDE
User’s Manual, available from the main CLIDE window in HelpHelp Contents. To access
CLIDE, follow these steps:

1. Install the SDK for the Cirrus DSP used in your system design.

2. From the Windows Start menu, select Cirrus Logic DSPProgramming ToolsCLIDE.

3. After CLIDE has opened, select File New Project.

4. Select one of the wizard-based templates and develop your DSP software project by
following the instructions contained in the CLIDE User’s Manual. Users can also use
CLIDE’s on-line Help system for assistance.

CLIDE has an Assembler tab in Project properties that can be used to set some of the
options when assembling within CLIDE.

 1.3 Accessing CASM Through the Assembler Command Line
Users can also access the assembler software by launching the casm.exe application. The
casm.exe application can be run from a console window opened from within the Cirrus
Device Manager (CDM) application, a batch file, or from a “make” utility.

Open the Cirrus Device Manager by clicking the CDM icon in the system tray, and then open
a console window by selecting the menu option FileOpen build console. The command
line specifies the source file and control directives for processing the file.

 1.3.1 Command Line Format

The format of the assembler command line is as follows:

casm <source file> <options>

Note: These can be in any order.

<source file> is a single valid file path representing the file containing assembler code. The
<source file> parameter must be specified. Otherwise, CASM exits with an error message. If
<source file> has no extension, CASM will append the default extension ‘.A’ to <source file>
prior to searching for the file. If the assembler does not find <source file>, it exits with an error
message.

If the assembler finds <source file> and the environment variable CASMSPEC is included in
a command, the environment string of the CAMSPEC variable is used as the default
assembler option. The format of the options defined in CASMSPEC must follow the format
described in Section 1.3.2.
1-2 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.3.2 Command Line Options

<options> contains zero or more control directives to the assembler. Each control directive
starts with the character ‘-‘(dash or minus) and ends with un-quoted white space. A single
dash '-' is used for single character options and a double dash '--' is used for multiple
character options. The text after the initial dash indicates the specific control directive for the
assembler to employ.

The formats of the various options are as follows. Command lines are case-insensitive. See
Section 1.4.3 for details. All alphabetic characters are transformed to upper case prior to
passing the options to the assembler.

Table 1-1 Command Line Options

Option Description

-a<file_name> Macro preprocessed source code output.

 -c Enable case sensitivity; CASM is case insensitive by default.

 --casmspec

CASMSPEC is an environment variable that the user can set to a default value for CASM to
use when given the –-casmspec option.
For example to set up CASMSPEC, the user could select the following options:

? The user should begin with the CASM requirement that the –i<macro include file> be included
in every invocation.

? The user might want CASM to be case sensitive with the -c directive.

? The user might want a listing file to always be generated with the -l directive.

To accomplish the user’s wishes, the CASMSPEC environmental variable in this manner:
 CASMSPEC=-iC:\CirrusDSP\bin\athena.h –c -l
After CASMSPEC is configured using the --casmspec option ensures preset options are
used whenever CASM is called.
Note: Environment strings do not allow the ‘=’ character, so ‘:’ must be used for definitions of

the environment variable CASMSPEC. See Section 1.4.4 for more information on
defining and referencing symbols in the Cirrus Logic 32-bit DSP assembler.

--cdl Emit dependency file .adf

--help Display all valid command line options and switches.

 -d<symbol>[:<value>]

The -D or -d directive instructs the assembler to define a symbol with label <symbol> prior to
assembling the source code. A symbol defined in this manner can be referenced in the
assembler source as if it were defined in the source. A replacement string <value> can
optionally be associated with the symbol by using either the ‘=’ or ‘:’ characters.

--debug
The --debug directive instructs the assembler to add symbol debugging information used by
CLIDE to the object file and instructs the assembler to create line-level debug information for
the CLIDE debugger.

 -e

The -e directive instructs the assembler to produce error output with alternative formatting.
Example:
With the -e directive:
 “<sourcefile> (<line #>) <macro line #>:Error”
Without the -e directive:

 “Error in <sourcefile>:<line #.<macro Line #>”

-f<file name> Used for the compatibility with the old CLINK.

-I<include folder>
Set include folder. If you include a header file in your source file such as .include “i.h”,
then adding -Ic:\example\inc\ tells CASM to search for i.h in the c:\example\inc
folder.

-i<macro include file> Platform dependent macros.

-l<lst file>

The -l directive instructs the assembler to create a listing file. If -l<lst file> is given in the option,
the listing file will be given this path, otherwise the source code root path will be used with the
default extension .LST. Similarly, if -l<lst file> has no extension, the default extension will be
appended to the path. If a file at the listing file path exists prior to the assembler run, the old file
contents will be lost.
DS795UM11 1-3
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.3.3 Command Line Examples

Example 1:

casm maketab.a -l --debug -dTABSIZE=128 -
i%tools%\CS498xx\common\inc\base.h

This example does the following:

• Assembles the file maketab.a in the working directory.

• Employs the definition file base.h that is appropriate for the CS498xx DSP.

• Define the symbol TABSIZE in the assembler and set the symbol to 128.

• Make listing file maketab.lst.

• Include debug information in the output file.

• Implicit make object file maketab.o.

Example 2:

casm c:\mycode\hiworld –ibase.h –dBYTEALIGN –ogreet.obj

This example does the following:

• Assembles file c:\mycode\hiworld.a.

• Employs definition file base.h.

• Defines the symbol BYTEALIGN in the assembler with no associated value.

• Makes the object file greet.obj in the working directory.

-o<object file>

The -o directive specifies the location of the object file to the assembler. If this option is not
specified in the command line, the assembler will make an object file using the root of the
source file path and the default extension .O. Similarly, if <object file> has no extension, the
default extension will be appended to the path. If a file at the object file path exists prior to the
assembler run, the old file contents will be lost. The object file is used exclusively by the CLINK
linker.

-s Add local symbols in the object file.

Table 1-1 Command Line Options (continued)

Option Description
1-4 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4 Assembly Language Format
An assembly language file is a text file parsed as a series of lines. Each line is terminated with
a new line character. Each line contains at most one instruction or assembler directive. A line
may contain all white space characters or consist entirely of comments.

 1.4.1 Code Line Format

A line containing an instruction or assembler directive must adhere to the following format:

<symbol or white space> <instruction or directive>

The first character of a code line is significant. If the initial character of <symbol or white
space> is not white space, a symbol is defined and its value is set to either the current value
of the address counter or the value of the assignment assembler directive. A symbol
definition ends with either a white space character or the special character ‘:’. See Section
1.4.4 for more on symbol definitions. If the initial character of <symbol or white space> is
white space, no symbol is defined for the current address.

<instruction or directive> follows the valid syntax of an operation or assembler directive.
Executable operations are covered in Chapter 2, Chapter 3, Chapter 4, and Chapter 5 of this
manual. Assembler directives are covered in detail in Section 1.4.16 of this chapter.

 1.4.2 Comment Character

The comment character in this assembler is ‘#’. The assembler ignores the text from the
comment character to the end of the line. The comment string appears in the listing file.

 1.4.3 Case Sensitivity

The assembler is not case sensitive unless the -c directive is used to enable case sensitivity.
The single exception to this rule is text between string delimiters. Case sensitivity should be
used whenever C-language source files are involved in a project. Even if there is a single C-
language file in a project, it is a good idea to enable case sensitivity for every assembler file,
too. See Section 1.4.7 on page 1-7 for more information on string definition.

 1.4.4 Symbol Definition

A valid assembler symbol must start with either an alphabetic character or the special
character ‘_’. Each symbol character after the first is either alphabetic ([‘a’...’z’] or [‘A’...’Z’]),
numeric ([‘0’...’9’]), or ‘_’. Placing the symbol string at the beginning of a line registers the
string in the assembler symbol table and associates the symbol with either the address
counter value or the value of the assignment assembler directive on the code line. Placing
the symbol string anywhere else in a line causes the assembler to search for the symbol in its
symbol table. If the assembler finds a match in the table, the value of the symbol is evaluated
in the context of the code line. If the assembler does not find a match, an assembler error is
generated.

There are a few assembler keywords that cannot be used as symbols. All register names and
memory reference labels are reserved (such as a0 and xmem).
DS795UM11 1-5
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.5 Local Symbol Definition and Use

Symbols beginning with ‘%’, ‘>’, or ‘<’ characters are called local symbols. These are used in
situations where the value of such a symbol is valid only for a brief period. Local symbols are
not recorded in the assembler symbol table. These symbols are not visible to the linker or
debugger.

To reference a defined local symbol, the local symbol name must be prefixed with either ‘<’ or
‘>’, depending on where the local symbol is defined. A local symbol reference starting with
the special character ‘>’ instructs the assembler that the value of the local symbol will be
defined later on in the code (a forward reference). A local symbol reference starting with the
special character ‘<’ instructs the assembler that the value of the local symbol has already
been defined (a backward reference).

The following code example employs local variables to implement a C-like While loop without
having to define any permanent symbols.

while (clause) {
#body
}
%whiletop:
calculate value of clause (zero or non-zero)
if (a==0) jmp>whileend
#loop body
jmp<whiletop
%whileend:

If there are multiple (non-nested) instances of this while structure in the same assembler file,
the local variables can be reused without causing a symbol redefinition error.

References to local symbols are different inside of macro bodies. See Section 1.4.17 for
more information on local variables in macro definitions.

 1.4.6 Expressions

Quantities to be evaluated at assembly time, such as addresses, conditionals, and numerical
values, are cast as expressions. Expressions in the assembler are composed using infix
notation, with binary operators between their operands. Therefore, a hierarchy of operator
precedence is necessary to establish an order of operator evaluation. Parenthetical
characters ‘(‘ and ’)’ provide an escape from evaluation difficulties. See Table 1-5 for
examples.

Externally defined symbols (.extern) can be used in expressions.

extern FOO

.xdata

BAR .dw FOO * 5
1-6 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.6.1 Floating-point Expressions

In an expression, any operation involving a floating point operand is promoted to float type.

Use of a floating point value in an address expression or a context requiring an integer
expression is disallowed.

Assembly time intermediate floating point computations are performed in double precision
float format or higher.

Float values are implicitly emitted as 32-bit fixed point.

An error is posted if the final value of a floating point expression is not in the [–1.0, 1.0] range.

 1.4.6.2 Address Expressions

Any expression involving a relocatable symbol, such as a label, is termed an address
expression. The value of an address expression must be less than 2^16. Address
expressions are limited in a fashion similar to C pointer arithmetic. For example:

• Legal address expressions:

<address> + <integer>

<address> - <integer>

<address> - <address>

• Illegal address expressions:

<address> + <address>

<address> <any-op> <float>

 1.4.7 Constants

There are three types of literal values in the assembler: floating point, integer, and string.

 1.4.7.1 Floating Point Literals

A floating point literal is expressed as:

<mantissa>[’E’|’e’<exponent>]

where

<mantissa> ::= <digits>[‘.’<digits>]

<exponent> ::= [[sign]<digits>]

Examples:

1.0

0.2e-10

99e20
DS795UM11 1-7
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.7.2 Integer Literals

Integer literals may be specified in any of the four commonly-used radices: hexadecimal,
decimal, octal, and binary. Hexadecimal radix integer literals are composed of the digits 0-9
and the characters A-F or a-f. Decimal literals may use the digits 0-9. Octal literals may use
the digits 0-7. Binary literals may use only the digits 0 and 1.

There are both prefix and postfix methods of radix specification for integer literals, absence of
a radix specification defaults to decimal.

 1.4.7.2.1 Prefix Radix Specification

hexadecimal: 0x or 0X followed by <hex-digits>

binary: 0b or 0B followed by <binary-digits>

Examples:

0xffff

0b010101010

12345

 1.4.7.2.2 Postfix Radix Specification

Hexadecimal, decimal, octal, and binary numbers can be specified with a postfix radix
specification character as follows:

hexadecimal: <hex-digits>(‘H’|’h’|’X’|’x’)

decimal: <digits>(‘D’|’d’|nil)

octal: <octal-digits>(‘Q’|’q’|’O’|’o’)

binary: <binary-digits>(‘B’|’b’)

Examples:

0ffffH

ffffX

777Q

101010B

 1.4.7.3 String Literals

Strings are consecutive text characters between the string delimiter character, which can be
either a single quote or double quote. The ending delimiter character must match the starting
delimiter character. Two quotes in a row, within a string, are treated as a single quote
character to be added to the contents of the string.
1-8 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.8 Unary Operators

Unary operators apply to only one operand. The target operand is the value or expression to
the immediate right of the operator. The unary operator characters for this assembler are as
follows.

 1.4.9 Binary Operators

Binary operators apply to two operands, the values or expressions to the immediate left and
right of the operator. The binary operators for this assembler are as follows.

NOTE: String operands that do not evaluate to numbers can only have the comparison operators
applied to them.

Table 1-2 Unary Operators

Operator Description

+ Unary plus, operand unchanged

- Unary minus, operand arithmetically negated

~ Complement, operand logically negated

! Not, operand boolean-wise (zero for false, non-zero for true) negated

Table 1-3 Binary Operators

Operator Type Operator Description

Arithmetic + Add

- Subtract

* Multiply

/ Divide

Logical

& And

| Or

^ Exclusive or

Comparison
(evaluates to

boolean (zero for
false, -1 for true)

= Is equal to

!= Is not equal to

<> Is not equal to

> Is greater than

>= Is greater than or equal to

< Is less than

<= Is less than or equal to
DS795UM11 1-9
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.9.1 Precedence of Operators

An expression is evaluated by first evaluating any parenthetical sub-expressions
encountered. Then all operators are evaluated in the order of precedence, the highest
precedence operators performed first, and the lowest precedence operators performed last.
The assembler precedence of operators is summarized in Table 1-4.

 1.4.10 Expression Examples

Table 1-5 shows examples for expressions, precedence of operators, and what the
expressions evaluate to.

 1.4.11 Built-in Functions

There are a number of built-in functions in the assembler that assist the programmer in the
configurability of code. These functions are presented in Table 1-6.

Table 1-4 Precedence of Operators

Precedence Description

6 (highest) unary +, unary -, ~, !

5 *, /

4 binary +, binary -

3 =, !=, <>, >, >=, <, <=

2 &

1 (lowest) |, ^

Table 1-5 Expression Examples

Expression Evaluation

32+3*(20-4) 32+(3*16) ’ 32+48 ’ 80

77/6*6+mod(77,6) (77/6)*6+mod(77,6) ’ (12*6)+mod(77,6) ’ 72+5 ’ 77

strcat(“moo”,‘cow’)=“moocow” “moocow”=”moocow” ’-1 (true)

14>=0&14<10 (14>=0)&14<10 ’ -1&(14<10) ’ -1&0 ’ 0 (false)

240&0x3f | 240&0x7f00 (240&0x3f) | 240&0x7f00 ’ 48 | (240&0x7f00) ’ 48 | 0 ’ 48

!0&9-12<>0^-64
(!0)&9-12<>0^(-64) ’ -1&(9-12)<>0^-64 ’ -1&(-3<>0)^-64 ’
(-1&-1)^-64 ’ -1^-64 ’ 63

Table 1-6 Built-in Functions

Function Description

.defined(<expression>)
This function returns zero (false) if the argument expression contains an undefined
symbol, non-zero (true) otherwise.

.isabsolute(<expression>) This function returns non-zero (true) if the expression evaluates to a numeric value
or an absolute address, zero (false) otherwise.

.isfloat(<expression >) Returns non-zero (true) if expression is a floating point quantity, zero (false)
otherwise.

.isint(<expression>) Returns non-zero (true) if expression is an integer quantity, zero (false) otherwise.

.isstring(<expression>) This function returns non-zero (true) if the argument expression evaluates to a
character string, zero (false) otherwise.
1-10 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.12 Mathematical Functions

There are a number of mathematical functions in the assembler. These functions are
presented in Table 1-7.

.classname(<address
expression>)

This function returns a string representing the memory type in which the input
address expression resides. The possible outputs are “X” for X memory, “Y” for Y
memory, “L” for XY memory, and “CODE” for code memory.

.typename(<expression>)
This function returns the string representing the type of the expression. Where
‘typename’ is one of “FLOAT”, “NUMBER”, “STRING”, “ADDRESS”,
“UNDEFINED”, “ERROR”, “EXTERNAL” or an enumerated type name.

.segname(<address expression>)
This function returns the name of the segment in which the input address
expression resides. Segment names are defined when segments are declared.
See Section 1.4.16.2, “Memory Segments” on page 16.

.segaddr(<address expression>)

This function returns the base address of the memory segment in which the input
address expression resides.
Note: .segaddr(<address expression>) + .offset(<address expression>) =

<address expression>).

.offset(<address expression>)
This function returns the offset from the segment base address in which the input
address expression resides, zero if undefined.

.filename()
This function returns a character string representing the full path of the file being
assembled.

.linenumber()
This function returns the line number in the assembler file in which this function call
resides.

.timestamp()
This function returns a character string representing the time this assembler run
began, in format “MM-DD-YY HH:MM:SS”.

.linecount() Returns the total number of source lines read.

Table 1-7 Mathematical Functions

Function Description

.mod(<expression1>,
<expression2>)

This function returns <expression1> modulo <expression2>, or the remainder
after division of <expression1> by <expression2>.

.shl(<expression1>, <expression2>)
This function returns <expression1> left-shifted by <expression2>, or
<expression1> multiplied by 2-to-the-power-of-<expression2>. <expression2>
must be in the range [0...31].

.shr(<expression1>, <expression2>)
This function returns <expression1> arithmetically right-shifted by
<expression2>, or <expression1> multiplied by 2-to-the-power-of-minus-
<expression2>. <expression2> must be in the range [0...31]. An arithmetic right
shift implies that the arithmetic sign of <expression1> is preserved.

.abs(<expression>)
Returns the absolute value of expression. Return datatype is same as
expression datatype.

.acos(<expression>)
Returns the arc cosine of expression in radians as a floating point value in the
range zero to pi. <expression> must be in the range [–1…1].

.asin(<expression>)
Returns the arc sine of <expression> in radians as a floating point value in the
range [–pi/2...pi/2]. <expression> must be in the range [–1…1].

.atan(<expression>)
Returns the arc tangent of <expression> in radians as a floating point value in the
range [–pi/2...pi/2].

.cos(<expression>) Returns the cosine of <expression> (given in radians) as a floating point value.

Table 1-6 Built-in Functions (continued)

Function Description
DS795UM11 1-11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

.exp(<expression>)

Returns the natural exponential (base e raised to the power of <expression>) as
a floating point value.
Example:

EXP1 .EQU .EXP(1.0) # EXP1 = 2.718282

.log(<expression>)
Returns <expr1> raised to the power <expr2> as a floating point value.
Example:

BUF .EQU .CVI(.POW(2.0,3.0)) # BUF = 8

.log(<expression>)

Returns the natural logarithm of <expression> as a floating point value.
<expression> must evaluate to an integer or floating point value greater than
zero.
Example:

LOG .set .LOG(100.0) # LOG = 4.605170

.log10(<expression>)

.log10(<expression>)

Returns the base 10 logarithm of <expression> as a floating point value.
<expression> must evaluate to an integer or floating point value greater than
zero.
Example:

LOG .EQU .LOG10(100.0) # LOG = 2.0

.log2(<expression>)

.log2(<expression>)

Returns the base 2 logarithm of <expression> as a floating point value.
<expression> must evaluate to an integer or floating point value greater than
zero.
Example:

LOG .EQU .LOG2(8.0) # LOG = 3

.max(<expr1>,<expr2>[,...,<exprN>])

.max(<expression>)

Returns the greatest of <expr1>,...,<exprN>. Expressions must be numerical. If
all expressions are integral type, the return value is an integer. Otherwise a
floating point value is returned.
Example:

MAX .set .MAX(1.0,5,-3) # MAX = 5.0
(floating point)

.min(<expr1>,<expr2>[,...,<exprN>])

.min(<expression>)

Returns the least of <expr1>,...,<exprN>. Expressions must be numerical. If all
expressions are integral type, the return value is an integer. Otherwise a floating
point value is returned.
Example:

MIN .set .MIN(1.0,5,-3.25) # MIN = -3.25

.pow(<expr1>,<expr2>)

.sign(<expression>)

Returns the sign of <expression> as an integer: -1 if <expression> is negative, 0
if zero, 1 if positive.
Example:

 .if .SIGN(INPUT)>=0 # is INPUT non-
negative?

.sin(<expression>) Returns the sine of <expression> (given in radians) as a floating point value.

.sqrt(<expression>)

Returns the square root of <expression> as a floating point value. <expression>
must be positive.
Example:

SQRT .EQU .SQRT(3.5) # SQRT = 1.870829

Table 1-7 Mathematical Functions (continued)

Function Description
1-12 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.13 Conversion Functions

There are a number of conversion functions in the assembler. These functions are presented
in Table 1-8.

.tan(<expression>)

Returns the tangent of <expression> (given in radians) as a floating point value.
Example:

TANGENT .set .TAN(1.0) # TANGENT =
1.557408

Table 1-8 Conversion Functions

Function Description

.b2f(<expression>)

Converts <expression> to a floating point value. <expression> should represent a
binary fraction.
Example:

FRC .EQU .B2F(0x40000000) # FRC = 0.5

.f2b(<expression>)

Obtain the fractional representation of the floating point <expression> as an 32-bit
integer.
Example:

FRAC1 .set .F2B(0.5) # FRAC1 = 0x40000000

FRAC2 .set .F2B(1.5) # error!
Example:

THREE_PT_98_IN_9_23 .equ
.F2B(3.98*.pow(2,–8.0))
#THREE_PT_98_IN_9_23 = 0x01fd70a4

.f2i(<expression>)

Converts <expression> to an integer value. Any fractional portion of <expression>
is removed (truncated).
Example:

INT .set .F2I(-1.05) # INT = -1

.i2f(<expression>)

Converts <expression> to a floating point value.
Example:

FLOAT .set .I2F(5) # FLOAT = 5.0

.ceil(<expression>)
Returns an integer value that represents the smallest integer greater than or equal
to <expression>.

.floor(<expression>)

Returns an integer value which represents the largest integer less than or equal to
<expression>.
Example:

FLOOR .SET .FLOOR(2.5) # FLOOR = 2

.round(<expression>)

Adds 0.5 to <expression> then converts to an integer as per .F2I or .FLOOR.
Example:

round1 .set .ROUND(1.5) # round1 = 2

round2 .set .ROUND(1.48) # round2 = 1

Table 1-7 Mathematical Functions (continued)

Function Description
DS795UM11 1-13
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.14 Loading Immediate Values to Registers

The Cirrus Logic Assembly Program (CASM) allows the developer to load 16 bits at a time
into a register. When the developer needs to load more than 16 bits into a register, the
developer must use multiple lines of code. Below are some examples of loading more than
16 bits into a register. The first example uses two processing cycles and no data memory,
and the second example uses one processing cycle and one word of data memory. It is often
more desirable to conserve processing cycles than it is to conserve memory. Therefore, the
second example is generally, but not always, recommended over the first example.

Example 1: Load 3.98 as a Q.N(9.23) fixed-point number into the into accumulator, a1.

1. Define the symbol “THREE_PT_98_IN_9_23” as shown below:

THREE_PT_98_IN_9_23 .equ .f2b(3.98*.pow(2,–8.0))

2. Load 16 bits at a time into the high part of the accumulator:

a1 = (THREE_PT_98_IN_9_23>>16) # 3.98 in Q9.23 #a1 = 00 01fd0000 00000000

lo16(a1) = (THREE_PT_98_IN_9_23 & 0x0000FFFF) #a1 = 00 01fd70a4 00000000

Note: Example 1 uses two processing cycles and no data memory. The following macro could be
used to implement the first example.

.macro

FLOAT_2_FIXEDQNM_REG_LOAD %intval, %fracval, %n, %m, %reg

inputs:

intval = integer part of float value

fracval = fractional part of float value

n = number of bits for (signed) integer part

m = number of bits for fractional part

reg = destination register (32 bit data register or accumulator)

%reg = (.shr(.f2b(%intval.%fracval*.pow(2,–(%n.0–1.0))),16))

lo16(%reg) = (.f2b(%intval.%fracval*.pow(2,–(%n.0–1.0)))&0xffff)

.endm

.code_ovly

FLOAT_2_FIXEDQNM_REG_LOAD 3, 98, 9, 23, a1

The above macro expands to

a1 = (.SHR(.F2B(3.98*.POW(2,–(9.0–1.0))),16))

LO16(a1) = (.F2B(3.98*.POW(2,–(9.0–1.0)))&0XFFFF)

Example 2: Load 3.98 as a Q.N (9.23) fixed-point number into the accumulator, a0.

.xdata_ovly

THREE_PT_98_IN_9_23 .equ .f2b(3.98*.pow(2,-8.0))

X_THREE_PT_98_IN_9_23 .dw (THREE_PT_98_IN_9_23)

.code_ovly

a0 = xmem[X_THREE_PT_98_IN_9_23] #a0 = 00 01fd70a4 00000000

Note: Example 2 uses one processing cycle and one word of data memory.
1-14 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.15 String Functions

There are a number of conversion functions in the assembler. These functions are presented
in Table 1-9.

 1.4.16 Assembler Directives

Assembler directives have a format similar to instructions, but they are instructions to the
assembler, not intended for the target DSP. Instructions or data memory locations may be
generated as a side effect, but not necessarily. The assembler directives assist the
programmer in controlling and configuring code.

There are directives that allow separate assembler files to share objects. Other directives
allow for allocation and initialization of data memory. There are directives for conditional
assembly allowing for optional features without writing multiple versions of the same code.
Finally, there are macros, which help the programmer encapsulate often-used or iterated
blocks of code.

Table 1-9 String Functions

Function Description

.strpos(<str1>,<str2>[,<start>])

Returns the 0 based position (0 = first character of the <str1>) of string <str2> in
<str1> as an integer, starting at position <start>. If <start> is not given the search
begins at the first character of <str1>. If the <start> argument is specified it must be
a positive integer.
If <str2> is not found in <str1>, the length of <str1> is returned.
Example:

ID .EQU .STRPOS('CS18101','18') # ID = 2

.strcmp(<str1>,<str2>)

Lexicographical string comparison (case sensitive). Returns an integer 0 if the two
strings are the same, 1 if <str1> is greater than <str2>, -1 if <str1> is less than
<str2>.
Example:

 .IF .STRCMP(STR,'MAIN') # does STR
differ from “MAIN”?

.strcat(<string1>, <string2>[, …
<stringN>])

This function returns the string arguments concatenated into a single string.

.strlen(<string>) This function returns the length of the argument character string (<string>).

.streval(<string>)
This function takes its character string argument and evaluates <string> as an
expression. The function returns the value of the expression.

.substr<string>,
<startexpression>[,<length-
expression>])

Return the substring starting at <start-expression> until the end of the string, or
<length-expression>+<start-expression>. <start-expression> is a 1-based index
into the string. If <length-expression> is omitted, the substring from <start-
expression> to the end of the string is returned.

.numtostr(<expression>) or

.str(<expression>)

This function evaluates <expression> and returns its numerical value as a decimal
character string.

.numtostrx(<expression>) or

.strx(<expression>)
This function evaluates <expression> and returns its numerical value as a
hexadecimal character string.
DS795UM11 1-15
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.16.1 Code Modularity

Macros used to enable the programmers to build modularity into their code are presented in
Table 1-10:

 1.4.16.2 Memory Segments

This segment directive instructs the assembler to put subsequent instructions or data
declarations in the memory specified by <segment-class>.

[<name>] segment <class_name> [at <address> | align <modulo>] OR

[<name>] .<segment-class> [at <address> | align <modulo>]

Use .xdata_ovly, .ydata_ovly, .data_ovly, and .code_ovly. For example:

MAIN_XDATA_ALIGN16 segment "X_OVLY" align 16

MAIN_XDATA_ALIGN32 .xdata_ovly align 32

SAMPLE_MCV .ydata_ovly

MAINCODE .code_ovly

MY_64_BIT_XY_DATA_SEGMENT .data_ovly

The segment definition ends with either the next segment directive or the end of assembly. All
consecutive declarations within a segment will appear contiguously in the final memory map
produced by the linker.

<name> is an optional parameter. <name> may be the same as used on other segment
declarations in which case the new declaration will be concatenated with the previous one(s)
with like <name> parameters. The ordering of these concatenations is indeterminate.

If the at form of the directive is used, the first memory location following the directive will be
placed at the absolute <address> specified. Only one declaration with at form is allowed for a
given segment <name>. If such a declaration exists, it determines the starting point for the

Table 1-10 Macros

Macro Description

.include <file string>

This directive opens the file with path <file string>, inserts, and assembles the file contents where the
directive resides. There is no default extension to an include file. If there is no extension to <file string>, the
assembler will attempt to open the file path with no extension. The include file can itself contain .include
directives with no nesting limit. An include file can be shared among several assembler files to define
common constants, expressions, and macros.

.public <symbols>
This directive allows the specified list of symbols to be referenced by other assembler files. <symbols>
contains one or more symbols separated by commas, that are defined in the course of assembly of this file.

.extern <symbols>

This directive tells the assembler that the specified list of symbols is defined with .public directives in other
assembler files. <symbols> contains one or more symbols separated by commas, defined in other assembler
files. If an .extern symbol is defined in the course of assembly of this file and declared to be .public, the
.public declaration takes precedent. If an .extern symbol is not defined in any object file, the linker will
produce an unresolved external error at link time. An .extern symbol cannot be used in an expression.

.end
This directive tells the assembler that there are no more lines to assemble in this file. Further assembly of this
file is halted and the file is closed. Use of this directive is optional, as this directive is equivalent to a physical
end of file. The.end directive may be used to hide text below the directive from the assembler.

.export <symbols>

This directive allows the specified list of symbols to be exported to a *.xo file at link time and to be referenced
by other assembler files. <symbols> contains one or more symbols separated by commas that are defined in
the same assembly file. Casm does not report an error if both .public and .export macros are used for the
same symbol. External symbols cannot be exported, so an error is reported in this case.
1-16 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

segment. All segments using the same <name> specification will be concatenated and follow
the segment generated with the at specification.

Use of the align form of the segment declaration will instruct the linker to align the first
memory location following the directive to the given address <modulo>. Only one declaration
with align form is allowed for a given segment <name>. All segments using the same
<name> specification will be concatenated and follow the segment generated with align
specification.

The at and align forms of the segment declaration are mutually exclusive and may not be
used together.

 1.4.16.3 Symbol Assignment

The following directives are used to assign values to symbols.

 1.4.16.4 Data Memory Assignment

Data memory directives are described Table 1-12:

Table 1-11 Symbol Assignment

Directive Description

<symbol> .equ <expression>

The .equ directive can only be applied to a unique symbol one time in an assembly,
meaning that the symbol must not be previously defined or redefined in the
assembly. There may be no forward references to symbols in <expression>.

Example: uyequ .equ (0x1)

<symbol> .set <expression>
This directive assigns the value of <expression> to the symbol defined in this code
line. The symbol can be redefined later in the assembly with other instances of the
.set directive. <expression> in this directive array contains forward references.

Table 1-12 Data Memory Assignment

Directive Description

.bss <expression>

No allocation performed. This directive instructs the linker that <expression> words
are reserved.
Example:

.xdata

.bss (0xff)

.bsc <count>,<value>?

This directive instructs the assembler to allocate <count> words in the current
memory segment. All words allocated are initialized to the value of <value>. If
<value> is not used, then there is no allocation. Memory location is reserved.
Example:

.data

.bsc (0xf),0x8
DS795UM11 1-17
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

.dcb <arg>[, <arg>, …]

Define constant byte(s). <Arg>(s) may be strings or integers. Strings are not
implicitly null terminated. Data is stored in big endian order and zero padded to the
next 32-bit word boundary.
Example:

 .dcb 0x30,0x31,0x32,0x33,0x34

 .dcb 0x35,0x36,0x37,0x38,0x40

 .dcb ‘R’

 .dcb ‘CirrusLogic’,0 # explicit null
termination

 .dcb ‘four’ # no null termination

#Generates the following memory image:

X 0000 30313233 34000000 35363738
40000000

X 0004 52000000 43697272 75734C6F
67696300

X 0008 666F7572

.dh <arg>[,<arg, …]

Define constant 16-bit halfword(s). <Arg>(s) must be in the range 0…65535 to fit in
16-bit storage. Data is stored in big endian order and zero padded to the next 32-bit
word boundary.
This construct is useful for packing a 16-bit address expression and a 16-bit integer
expression in the same 32-bit word.
Example

.dh 0x2d,0x123,0x2d,0x1111

#Generates the following memory image:

0x002d0123

0x002d1111

.dw <expression>

.dw <expression1>,<expression2>

These directives instruct the assembler to allocate one word in the current memory
segment. If the memory is X or Y, the first form must be used, and the word
allocated is initialized to the value of <expression>. If the memory is X-Y, the
second form must be used. The X word allocated is initialized to the value of
<expression1>, and the Y word allocated is initialized to the value of
<expression2>.
Example 1:

.xdata

.dw (0x12345678)

Example 2:

.data

.dw (0x1),(0x2)

.dd <expression>

This directive instructs the assembler to allocate one word in the current memory
segment, which must be in XY. The X word allocated is initialized to the most
significant bits of <expression>, and the Y word allocated is initialized to the least
significant bits of <expression>.
Example:

.data

.dd (0x12345678ABCDEF00)

Table 1-12 Data Memory Assignment (continued)

Directive Description
1-18 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.16.5 Conditional Assembly

Conditional assembly directives are described Table 1-13.

Table 1-13 Conditional Assembly Directives

Directive Description

.if <expression>

This directive evaluates <expression> (<expression> must not contain a forward
reference). If the value is true (non-zero), the lines just below this directive are
assembled to the next instance of the .elseif, .else, or .endif directive. If the
directive is .elseif or .else, the assembler will skip to the following .endif directive.
Normal assembly continues after the .endif directive. If the value is false (zero), the
assembler will skip to the corresponding .elseif, .else, or .endif directive. The
directive encountered is then executed.
An .if directive begins an .if block. A corresponding .endif directive must follow the
.if directive. An .if block does not require either ann .elseif directive or an .else
directive.

.elseif <expression>

This directive functions in the same manner as the .if directive above. However,
this directive must be contained within an .if block, that is, after an .if directive and
before its corresponding .endif directive. In addition, the .elseif directives in an .if
block must all occur before a corresponding .else directive.

.else
This directive, if encountered when the .if directive and all .elseif directives in the .if
block have evaluated to false (zero), instructs the assembler to assemble lines just
below this directive until an .endif directive is encountered.

.endif
This directive indicates the termination of an .if block. Normal assembly continues
after this line.
DS795UM11 1-19
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.16.6 Token Substitution

.def <token> <substitution>

Defines a token substitution. All occurrences of <token> are replaced with <substitution> for
the remainder of the source file or until a matching .undef statement is encountered.

<token> may be any text that is not already known as a symbol to the assembler.

<substitution> may be any arbitrary text delimited by end of line or start of comment.

Example:

.def STACK_PTR i7

x0 = xmem [STACK_PTR]

.if

There are four basic configurations of an .if block:

? if Configuration I

.if <exp>
<code>

.endif
? if Configuration II

.if <exp>
<code0>

.else
<code1>

.endif
? if Configuration III

.if <exp0>
<code0>
.elseif <exp1>
<code1>
optional additional .elseif clauses
.endif

? if Configuration IV

.if <exp0>
<code0>
.elseif <exp1>
<code1>
.dw (0x1),(0x2)optional additional
.elseif clauses
.else
<codeN>
.endif

The conditional expressions are evaluated until one is found to be true. The code
segment corresponding to this conditional is assembled. If no conditional
expression evaluates to true, and an .else directive exists in this block, the code
segment corresponding to the .else directive is assembled.
It is possible to nest .if blocks. The entire nested .if block, from the .if directive to
the .endif directive, must reside in one <code> section, meaning that the .if
directive cannot reside in <codeN> and its corresponding .endif directive reside in
<codeN+1>.

Table 1-13 Conditional Assembly Directives (continued)

Directive Description
1-20 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

.undef <token>

Undefines previously defined token (defined with .def). The token is undefined until end of
source code or until it is redefined with .def.

Example:

.def STACK_PTR i7

if .defined(STACK_PTR)

x0 = xmem[STACK_PTR]

.endif

.undef STACK_PTR

x0 = xmem[STACK_PTR] # <- CASM report error!

 1.4.16.7 Listing and Message Control

The following directives have no effect if the –l switch does not appear in the command line.
Omitting the –l switch specifies that no listing file will be created.

• .list <switches>

This directive controls the format of the listing file. <switches> contains one or more listing
control switches, separated by spaces. The formats of the switches are as follows:

Table 1-14 Listing Control Switches

Directive Description

off This switch inhibits listing output.

on This switch activates listing output, or reverses the action of the off switch.

cond
+cond
–cond

These switches control the listing of code blocks skipped over during .if block
processing. ‘+’ or no prefix will list the skipped blocks (the default behavior), and
the ‘-‘ prefix will not list the skipped blocks.

mac
+mac
–mac

These switches control the listing of macro expansion. ‘+’ or no prefix will list the
expansion lines (the default behavior), and the ‘-‘ prefix will not list the expansion
lines.

inc
+inc
–inc

These switches control the listing of include files. ‘+’ or no prefix will list the
contents of include files (the default behavior), and the ‘-‘ prefix will not list the
include files.

sym
+sym
–sym

These switches control the listing of the symbol table. ‘+’ or no prefix will list the
symbol table (the default behavior), and the ‘-‘ prefix will not list the symbol table.

gensym
+gensym
–gensym

These switches control the listing of internally generated symbols in the symbol
table. ‘+’ or no prefix will list internal symbols in the symbol table, and the ‘-‘ prefix
will not list internal symbols in the symbol table (the default behavior).

allsym
+allsym
–allsym

These switches control the listing of internally reserved symbols in the symbol
table. ‘+’ or no prefix will list reserved symbols in the symbol table, and the ‘-‘ prefix
will not list reserved symbols in the symbol table (the default behavior).

.page

.page <expression>

This directive controls pagination of the listing file and the page size. The first form,
without an argument, causes a page advance in the listing. The second form
establishes <expression> as the number of lines per page. The default number of
lines per page is 60.

.title <string>
This directive instructs the assembler to print <string> at the top of every listing
page. This directive must be employed only per assembly.

.subtitle <string>

This directive instructs the assembler to print <string> under the title line of
subsequent listing pages. <string> will be printed on the subtitle line of the current
listing page if the directive is encountered within the first four lines of the page. This
directive may be employed more than once or not at all.
DS795UM11 1-21
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.16.8 Assembler Warning/Error Control

The assembler emits warnings and errors for certain combinations of target DSP instructions.
The .pragma directive allows some control over what conditions are considered errors and
warnings. The syntax of the .pragma directive is:

.pragma enable:<condition> [,<condition>...]

.pragma disable:<condition> [,<condition>...]

The possible condition values are:

• OSp

If enabled, the use of registers i8-i11, nm8-nm11, iic_mask, and iic_addr is allowed.
Otherwise, such use produces an error because these registers are reserved for use by the
DSP operating system.

The errors or warnings produced are:

• LOAD_DELAY_AS_WARNINGp

If enabled, the use of an index register immediately after it is loaded with a constant will
be treated as a warning condition. Otherwise, such an instruction sequence produces
an error.

• GLOBAL_MEMp

If enabled, the standard memory location directives (.data, .code, .ydata, .xdata) are
allowed. Otherwise use of those directives is an error, and code should use the
application-specific memory segment directives (such as .xdata_ppm)

• CODE_IN_DATAp

If enabled, executable instructions found in data segments are allowed. Otherwise,
such instructions cause an error.

• DATA_IN_CODEp

If enabled, data definition directives (such as .dw) found in code segments are allowed.
Otherwise, such instructions cause an error.

.error <strings>

This directive instructs the assembler to print an error message on both the
console output and the listing file. <strings> consists of one or more string
expressions, separated by commas, that are concatenated together to create the
message.

.message <strings>
This directive instructs the assembler to print an message on the console output
but not the listing file. <strings> consists of one or more string expressions,
separated by commas, that are concatenated together to create the message.

Table 1-14 Listing Control Switches

Directive Description
1-22 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.16.9 Data Structure Types

CASM provides a way of grouping variables into structures, similar to structures in the C
programming language. Elements of structures are referred to as “members”. Structure
members can be initialized at structure type definition time or at structure instantiation time.
Values specified for structure members at structure type definition time propagate to each
instance of the type unless overridden by the instance definition. Not all structure members
need to be initialized, but a member initialized at instantiation time may not be preceded by
an uninitialized member. Any of the data memory directives described in Section 1.4.16.4
may be used to define structure type members.

Structure type definition syntax:

<struct type name> .struct

<element1> <data memory directive>

<element2> <data memory directive>

<element3> <data memory directive>

...

<elementn> <data memory directive>

 .endstruct

Structure instantiation syntax:

<label> <struct type name> (<initial_value1>,...,<initial valuen>)

Accessing the structure members from code:

• Direct structure member access:

 a0 = xmem[<struct symbol>.<element>]

• Indirect structure member access may be performed by adding the offset of the member
inside the structure to the structure's address:

i0 = (<struct symbol 1>)

i1 = (<struct symbol 2>)

a0 - a1

if (a > 0) jmp >

 anyreg (i0, i1)

%

i0 = i0 + (<struct type>.<element>)

x0 = xmem[i0]

• Accessing members of an externally-defined structure:

<struct type> .struct

...

...

 .endstruct

 .extern <symbol> (<struct type>)

 a0 = xmem[<symbol>.element]

Example 1:

define a structure type labeled Y_OS_GLOBAL_VARS_T

Y_OS_GLOBAL_VARS_T .struct

_X_BY_IOBUFFER_PTRS .bsc NUM_IOBUFFER_CHANNELS,0
DS795UM11 1-23
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

_X_VY_HOST_SAMPLERATE .dw 0

_X_VY_Host_Output_Mode_Control .dw 0

_X_VY_IO_Free .dw 0

_X_VY_Autodet_config .dw 0

_X_VY_IO_Processed .dw 0

_X_VY_ODT_PTR .bsc NUM_OVLY_SLOTS,0

 .endstruct

 .ydata_dec

define an instance of the Y_OS_GLOBAL_VARS_T structure type:

Y_OS_GLOBAL Y_OS_GLOBAL_VARS_T

 .code_dec

read the value of the _X_VY_HOST_SAMPLERATE member of the Y_OS_GLOBAL
structure:

 y0=ymem[Y_OS_GLOBAL._X_VY_HOST_SAMPLERATE]

Example 2:

define a structure type labeled EXAMPLE_STRUCT_T:

EXAMPLE_STRUCT_T .struct

INITIALIZED_ARRAY_1 .bsc 2,0

UNINITIALIZED_WORD_2 .bss 1

INITIALIZED_ARRAY_3 .bsc 3, 1

INITIALIZED_WORD_4 .dw 0x7FFFFFFF

UNINITIALIZED_ARRAY_5 .bss 5

 .endstruct

 .ydata_dec

define an instance of the EXAMPLE_STRUCT_T structure type:

EXAMPLE_STRUCT EXAMPLE_STRUCT_T

 .code_dec

read the value of the UNINITIALIZED_WORD_2 member of the EXAMPLE_STRUCT
structure:

 y0 = ymem[EXAMPLE_STRUCT.UNINITIALIZED_WORD_2]

Arbitrary structure nesting is supported. All the rules regarding initialization that apply to
structures without nested structures apply here as well.

Structure nesting syntax:

<struct type name> .struct

<element1> <data memory directive> or <struct type name>

<element2> <data memory directive> or <struct type name>

<element3> <data memory directive> or <struct type name>

...

<elementn> <data memory directive> or <struct type name>

 .endstruct
1-24 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

Nested structure initialization syntax:

<label> <super struct type name> (<initial_value1>,...,<initial valuen>)

Accessing the nested structure members from code:

• Direct nested structure member access:

 a0=xmem[<superstruct symbol>.<substruct symbol>.<element>]

• Indirect nested structure member access may be performed by adding the offset of the
member inside the superstructure to the structure's address:

i0 = (<superstruct symbol 1>)

i1 = (<superstruct symbol 2>)

a0 - a1

if (a > 0) jmp >

 anyreg (i0, i1)

%

i0 = i0 + (<superstruct type>.<substruct type>.<element>)

x0 = xmem[i0]

Example 1:

Y_OS_GLOBAL_VARS_T .struct

_X_BY_IOBUFFER_PTRS .bsc NUM_IOBUFFER_CHANNELS,0

_X_VY_HOST_SAMPLERATE .dw 0

_X_VY_Host_Output_Mode_Control .dw 0

_X_VY_IO_Free .dw 0

_X_VY_Autodet_config .dw 0

_X_VY_IO_Processed .dw 0

_X_VY_ODT_PTR .bsc NUM_OVLY_SLOTS,0

 .endstruct

DEMO_STRUCT_TYPE_T .struct

_ELEMENT_0 .dw 0

_ELEMENT_1 .dw 0

_ELEMENT_2 Y_OS_GLOBAL_VARS_T

_ELEMENT_3 .dw 0

 .endstruct

 .ydata_dec

Y_OS_GLOBAL Y_OS_GLOBAL_VARS_T

Y_DEMO_STRUCT DEMO_STRUCT_TYPE_T (0x1,0x2,0x3,0x4,0x5,0x6,0x7,

0x8,0x9,0xA,0xB,0xC)

CASM supports struct initialization with brackets. For example, Y_DEMO_STRUCT can be
initialized the following way:

Y_DEMO_STRUCT DEMO_STRUCT_TYPE_T
(0x1,0x2,(0x3,0x4,0x5,0x6,0x7,0x8,0x9,0xA,0xB),0xC)

or

Y_DEMO_STRUCT DEMO_STRUCT_TYPE_T
(0x1,0x2,(0x3,0x4,0x5,0x6,0x7,0x8),0xC)

In the second example, _X_VY_IO_Processed and _X_VY_ODT_PTR will have pre-defined
values (0 and NUM_OVLY_SLOTS,0).
DS795UM11 1-25
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

Example 2:

define various nested structures:

STRUCT_1_T .struct

member_1 .dw 0x101

member_2 .dw 0x102

member_3 .dw 0x103

 .endstruct

STRUCT_2_T .struct

member_1 .dw 0x201

member_2 .dw 0x202

member_3 .dw 0x203

 .endstruct

STRUCT_3_T .struct

member_1 .dw 0x301

member_2 .dw 0x302

member_3 .dw 0x303

 .endstruct

STRUCT_23_T .struct

STRUCT_2 STRUCT_2_T

STRUCT_3 STRUCT_3_T

 .endstruct

STRUCT_4_T .struct

STRUCT_1 STRUCT_1_T

STRUCT_23 STRUCT_23_T

 .endstruct

 .ydata_dec

define an instance of the STRUCT_4_T structure type:

STRUCT_4 STRUCT_4_T (0x401, 0x402, 0x403)

 .code_dec

read the value of the member_1 member of the STRUCT_2 nested structure:

 y0 = ymem[STRUCT_4.STRUCT_23.STRUCT_2.member_1]

 1.4.16.10 Sizeof Function

This function returns the number of words allocated for a structure or a symbol.

sizeof(<struct type name>)

sizeof(<struct symbol>)

sizeof(<symbol>)
1-26 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

Examples:

Y_OS_GLOBAL_VARS_T .struct

_X_BY_IOBUFFER_PTRS .bsc NUM_IOBUFFER_CHANNELS,0

_X_VY_HOST_SAMPLERATE .dw 0

_X_VY_Host_Output_Mode_Control .dw 0

_X_VY_IO_Free .dw 0

_X_VY_Autodet_config .dw 0

_X_VY_IO_Processed .dw 0

_X_VY_ODT_PTR .bsc NUM_OVLY_SLOTS,0

 .endstruct

SYMBOL .equ 10 + sizeof(Y_OS_GLOBAL_VARS_T)

 .ydata_dec

Y_OS_GLOBAL Y Y_OS_GLOBAL_VARS_T

SYMBOL_0 .dw 12

SYMBOL_1 .bss 10

 .code_dec

i0=(sizeof(Y_OS_GLOBAL_VARS_T))

i0=(sizeof(Y_OS_GLOBAL))

i0=(sizeof(SYMBOL_0))

i0=(sizeof(SYMBOL_1))

 1.4.16.11 Assert Directive

This macro definition is used for debug purposes. Expression in the assert macro is
evaluated as true or false. If the value of the assert expression is fale, CASM reports the
error.

Usage:

.assert <expression>

Example:

a_t .struct

channel_address .dw 0

channel_stride .dw 0

channel_buffer .bss 16

 .endstruct

 .xdata_ovly

my_data a_t

 .code_ovly

...

i4 = (0)+(my_data)

use a single index register to access the members of the structure

make sure the type declaration doesn’t violate the coding assumptions

i0 = xmem[i4]; i4+ = 1 # i0 = channel_ptr

.assert (a_t.channel_stride = (a_t.channel_address+1))
DS795UM11 1-27
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

nm4 = xmem[i4]; i4+ = 1 # nm4 = channel stride

.assert (a_t.channel_buffer = (a_t.chanel_stride+1))

#i4 = buffer

...

 1.4.17 Macro Definition and Calling
This directive instructs the assembler to begin defining a macro:

• macro
.macro nolist

This directive instructs the assembler to begin macro definition. Unlike other assemblers, the
macro defined is not associated with a symbol defined at the beginning of this line, so there
should be no symbol defined on this line. The second form of this directive inhibits the lines of
the macro definition from appearing in the listing file.

The line immediately following the .macro directive contains the calling prototype. The format
of the prototype line is as follows.

[<%symbolarg>] <name> <%args>

<symbolarg>, if defined, must begin in the first column of the line. This local symbol allows for
the macro call to pass an argument as a symbol definition. The symbol in the macro call is not
defined or re-defined, but passed as an argument to the macro. <name> is the macro name.
<name> cannot begin at the first column of the line.

 <%args> is an optional list of local symbols that serve as arguments to the macro. These
arguments should be separated by commas. There are two ways to use commas:

• ROMCMD {"ABC",7}, ABCROUTINE

• ROMCMD "ABC"%,7, ABCROUTINE

In the first example, CASM understands that the curly braces enclose an entire parameter. In
the second example, the percent sign “escapes” the comma and causes CASM to accept it
as text rather than a parameter delimiter. A percent sign can also be used to “escape” a curly
brace or another percent sign to get these characters accepted as text rather than special
parameter syntax.

The lines after the calling prototype, up to but not including the closing .endm directive,
constitute the macro body. It is possible to define symbols within the macro body, but like the
arguments, all symbols in a macro must be local symbols. All references to both arguments
and body symbols must start with the ‘%’ character, employing the same format as their
definition. No ‘>’ or ‘<’ references are allowed in a macro body. A local symbol outside of the
macro body cannot be referenced.

The ‘%’ character has other special functions within a macro body. The special functions are
described in Table 1-15.
1-28 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

The following directives are used in defining macros:

• .endm

This directive marks the end of a .rept block or .macro body. Normal assembly resumes after
this line.

• .exitm

This directive, if encountered during macro expansion, will terminate macro expansion at this
point, essentially skipping to the corresponding .endm directive.

An example of a macro is given in the code example in Section 1.4.19.

 1.4.18 Macro Replication

The following expression is used to replicate macros:

.rept <expression>

.rept %<variable>=<start>,<stop>[,<step>]

.endm

Create duplicates of enclosed block of source lines. <expression> must be a non-negative
integer.

<variable> is assigned a value of <start> for the first iteration and is incremented by <step>
(or by 1 if <step> is not supplied) on each successive iteration. <variable> does not need to
be previously defined. On the last iteration, <variable> is equal to or less than <stop>.

Example 1:

count .set 3

 .rept count

 .dw 0x20

 .endm

Generates:

count .set 3

 .dw 0x20

 .dw 0x20

 .dw 0x20

Table 1-15 Special Characters Used in Macros

Characters Description

%%: Replaced with a single ‘%’ character in the macro expansion.

%#: Delineates a comment that will not appear in the macro expansion.

%&:
Replaced with no characters, used as a concatenation operator in conjunction with a symbol
or argument reference.

%(<string>): Replaced with the contents of <string>.
DS795UM11 1-29
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

Example 2:

 .rept %v=1,5,2

 .dw %v*5+3

 .endm

Generates:

 .dw 8

 .dw 18

 .dw 28

Example 3:

 .macro

 MapDef %index,%offset

DEF_AUDIOMAP%&%(.numtostr(%index)) .set %(.numtostr(%offset))

 .endm

AUDIO_INDEX .set 1

 .rept %m=1,4

 .rept %%n=1,3

MapDef AUDIO_INDEX,%m*4+%%n

AUDIO_INDEX .set AUDIO_INDEX+1

% .endm

.endm

Generates:

DEF_AUDIOMAP1 .set 5

DEF_AUDIOMAP2 .set 6

DEF_AUDIOMAP3 .set 7

DEF_AUDIOMAP4 .set 9

...

DEF_AUDIOMAP12 .set 19
1-30 DS795UM11
Copyright 2013 Cirrus Logic

Cirrus Logic Assembly Program (CASM)
32-bit DSP Assembly Programmer’s Guide

1

 1.4.19 Assembly Language Example

The following code example employs many of the assembler directives in this section,
concentrating on macros and conditional assembly, to create a generic FIR filter macro.

.list-cond

.macro
% labelfir%tapptr, %tapbuf, %tapcir, %wtbuf, %order
tapptr: pointer into tap buffer, string reference
tapbuf: tap buffer
tapcir: tap buffer circular length
wtbuf: tap weight buffer
order: FIR order

make sure buffer memory is configured properly
 .ifclassname(%tapbuf) = "XYMEM" | classname(%wtbuf) = "XYMEM"
 .error "fir: tap and/or weight buffer cannot be in x-y memory"
 .exitm
 .elseifclassname(%tapbuf) = "XMEM" & classname(%wtbuf) = "XMEM"
 .error "fir: tap and weight buffer cannot both be in x memory"
 .exitm
 .elseifclassname(%tapbuf) = "YMEM" & classname(%wtbuf) = "YMEM"
 .error "fir: tap and weight buffer cannot both be in y memory"
 .exitm
 .endif

load address registers and perform convolution depending on where circular
taps and weights are
 .ifclassname(%tapbuf) = "YMEM"
 i0 = (%wtbuf)
 i4 = %(%tapptr)

recall the %(<string>) operator
 nm4 = (%tapcir)
 a0 = 0;x0 = xmem[i0]; i0 += 1;y0 = ymem[i4]; i4 += 1
 do (%order), %loop
%loop:a0 += x0*y0; x0 = xmem[i0]; i0 += 1; y0 = ymem[i4]; i4 += 1
 nm4 = (0)
 .else
 i4 = (%wtbuf)
 i0 = %(%tapptr)
 nm0 = (%tapcir)
 a0 = 0;x0 = xmem[i0]; i0 += 1;y0 = ymem[i4]; i4 += 1
 do (%order), %loop
%loop:a0 += x0*y0; x0 = xmem[i0]; i0 += 1; y0 = ymem[i4]; i4 += 1
 nm0 = (0)
 .endif
new value of index register is not put back into tapptr
 .endm

The above macro does a simple FIR one time and checks the memory locations of the taps
and tap weights to assure a fast FIR can be performed. This macro can be called as follows.

Mylabelfir“xmem[inptr]”, inbuffer, 128, lpfilter, 65
DS795UM11 1-31
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

Chapter 2

232-Bit DSP Internal Architecture
and Programming Model

 2.1 Overview
The Cirrus Logic 32-bit DSP core is a fixed point, fully programmable digital signal processor
which achieves high performance through an efficient instruction set and highly parallel
architecture. This device uses two's complement fractional number representation. The block
diagram of the internal architecture is shown in Figure 2-1. The device has busses for two
data memory spaces and one program memory space.

 Figure 2-1. Cirrus Logic 32-Bit Architecture

The Cirrus Logic 32-bit DSP core consists of the following modules:

Program Control Unit

Instruction
Decoder

Call
Stack

Loop
Stack

Interrupt
Control

Interrupts

Dual MAC/ALU Data Paths

MAC/ALU A

Eight 32-bit
Data Registers

Eight 72-bit
Accumulators

MAC/ALU B

Dual Address Generation Units (AGU)

X Address Generation
Unit

8 Index/Modulo
Register Pairs

Y Address Generation
Unit

4 Index/Modulo
Register Pairs

Program Data Bus

Program Address Bus

X Address Bus

Y Address Bus

X Data Bus

Y Data Bus

Address
Generation

Peripheral
MUX

Peripheral
Address

Peripheral
Data
DS795UM11 2-1
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

• Program control unit

• Parallel Data Paths (A and B).

• Parallel Address Generation Units (AGUs) The AGUs contain:

• Eight 16-bit registers for address generation

• Eight 16-bit registers that work in conjunction with the index registers to provide
different addressing modes.

 2.2 Data Path and Accumulators Unit
Figure 2-2 shows the data flow within the Data Path and Accumulator Unit. Each data path
has four 32-bit general-purpose registers and four 72-bit accumulators (eight each, total).
Each 72-bit accumulator is the concatenation of three registers: Guard, High, and Low.

 Figure 2-2. Data Flow within Data Path and Accumulators Unit

MAC A

32-bit Data Registers

X0
X1
X2
X3
Y0
Y1
Y2
Y3

72-bit Accumulators

A0
A1
A2
A3
B0
B1
B2
B3

ALU A

32-bit

32-bit

72-bit

72-bit

72-bit

72-bit

72-bit

72-bit

SRS A

X Data Bus

Y Data Bus

32-bit

32-bit 32-bit 32-bit 32-bit

32-bit

MAC B

ALU B

SRS B

(Identical Bus Widths for
A and B Data paths)
2-2 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

The Guard registers are 8 bits, High and Low registers are 32 bits, and all parts can be
addressed independently. See Figure 2-3. Each data path also has one Multiply-Accumulate
unit (MAC), Shifter/Rounder/Saturator (SRS) and Arithmetic Logic Unit (ALU). The ALU is
responsible for all the logical operations performed on the accumulators. The way the SRS
handles data in the accumulator and transfers it to the data bus is explained later in this
chapter.

 Figure 2-3. Data Path Registers

X Data Registers

31 0

x0

x1

x2

x3

Y Data Registers

31 0

y0

y1

y2

y3

A Accumulators

71 64 63 32 31 0

a0g a0h a0l

a1g a1h a1l

a2g a2h a2l

a3g a3h a3l

B Accumulators

71 64 63 32 31 0

b0g b0h b0l

b1g b1h b1l

b2g b2h b2l

b3g b3h b3l
DS795UM11 2-3
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

For successive additions to a particular accumulator, it is possible for the sum being greater
than maximum value that can be represented by 32 fixed-point bits. The guard bits allow for
temporary accommodation of this overflow. This is useful when you are adding a bunch of
numbers that will sum to be less than the maximum, but can overflow all the additions have
completed.

Example 2-1

For example

Consider this sum: 0.5 + 0.75 - 0.3 - 0.8 - 0.6 - 0.4 - 0.25 + 0.5 = -0.6

The intermediate sums are:

0.5 + 0.75 = 1.25 (over-flow occurs. Can’t be represented by 32 fixed-point
bits – one more bit is needed)

0.5 + 0.75 - 0.3 = 0.95

0.5 + 0.75 - 0.3 - 0.8 = 0.15

0.5 + 0.75 - 0.3 - 0.8 - 0.6 = -0.45

0.5 + 0.75 - 0.3 - 0.8 - 0.6 - 0.4 = -0.85

0.5 + 0.75 - 0.3 - 0.8 - 0.6 - 0.4 - 0.25 = -1.1 (Overflow occurs. Can’t be
represented by 32 fixed-point bits – one more bit is needed)

0.5 + 0.75 - 0.3 - 0.8 - 0.6 - 0.4 - 0.25 + 0.5 = -0.6

With these 8 guard bits the numeric range of the accumulator is extended by 256 extra levels
of precision.

 2.2.1 Data Representation

The data representation used in this processor is the two's complement fractional notation.
The 32-bit, 64-bit, and 72-bit fractional representations are shown in Figure 2-4, Figure 2-5,
and Figure 2-6. The S bit is the sign bit. The X and Y data registers contain 32-bit operands,
and the accumulators contain 72-bit operands which may be read out through the SRS as 32-
bit or 64-bit operands. All internal ALU operations in the data path are 72 bits.

The 32-bit operand represents Twos complement form with the left most bit is the sign bit,
followed by the radix point and the 31-bit fractional part. The largest positive number that can
be represented is 0x7fffffff (1-2-31 in decimal), and the largest negative number is
0x80000000 (-1.0 in decimal).
2-4 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 Figure 2-4. 32-bit Fractional Representation

The 64-bit accumulator has the sign bit as the left most bit followed by the radix point and the
63-bit fractional part.

 Figure 2-5. 64-bit Fractional Representation

A 72-bit accumulator has the sign bit as the left most bit followed by 8 integer bits, the radix
point, and the 63-bit fractional part. The largest positive number that can be represented in an
accumulator is 0x7f ffff ffff ffff ffff (256-2-63 in decimal) and the largest
negative number is 0x80 0000 0000 0000 0000 (-256.0 in decimal).

 Figure 2-6. 72-bit Fractional Representation

A comparison can be made between integer and fractional number representation. The range
for integer representation is +/-2N-1, and for fractional representation is +/-1. To convert from
an integer to a fraction the integer is multiplied by a scaling factor. The representation of a
result from an addition or subtraction for both integer and fractional numbers is the same.
This is not true when the arithmetic operation is a multiplication or a division. The difference is
that the extra bit obtained in integer multiplication acts as a duplicate sign bit in fractional
multiplication. See Figure 2-7.

a0h

3031 0
S 2-1 2-2 2-3

Radix
Point

Fractional Part

a0h

32 31 0

S 2-1 2-2 2-3

Radix
Point

Fractional Part

a01

63

a0g

64 63 32

Sign 26 2127 24 23

Radix
Point

Fractional Part

a0h

71

a01

31 0

25 22

Signed Integer Part
DS795UM11
Copy
right 2013 Cirrus Logic

2-5

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 Figure 2-7. Integer vs. Fractional Multiplication

 2.2.2 Accumulator Data Transfers

A 32-bit value may be transferred from the X data bus or the Y data bus to an accumulator.
The 32-bit value will be loaded into the high portion of the accumulator and sign extended
into the guard. The low portion of the accumulator will be zeroed.

A 64-bit value may be transferred from the X data bus and Y data bus to an accumulator. The
32-bit value from the X data bus will be loaded into the high portion of the accumulator and
sign extended into the guard. The 32-bit value from the Y data bus will be loaded into the low
portion of the accumulator.

Integer Multiplication:
Multiplying 2 n-bit numbers results in a 2n-bit product.

23 22 21 20

1 0 0 0 (8)

0 0 1 1 (3)

8-bit result: 0 0 0 1 1 0 0 0 = 24 no shifting needed

Fractional Multiplication:
If we have a P.Q. number, we have (P-1) integer bits and 1 sign bit. Q is the number of fractional bits, as shown in Figure 2-4.

1.3 numbers: 1. 0 0 0 (-1)

0. 0 1 1 (3/8)

When doing fractional multiplication, extend the sign bits to the length of the product register.

1 1 1 1 1. 0 0 0 (-1)

0 0 0 0 0. 0 1 1 (3/8)

8-bit result: 1 1. 1 0 1 0 0 0 which is a 2.6
number

To format the answer back into a 1.7 number, shift it left , since we have an extra sign bit in the integer portion of the answer.

21 20 2-1 2-2 2-6 20 2-1 2-6

1 1. 1 0 1 0 0 0 = 1. 1 0 1 0 0 0 0

so,

1. 1 0 1 0 0 0 0 = -1 + 2-1 + 2-3 = -3/8

the correct
answer

In general, when multiplying a P.Q. x W.Z number, the result is:

(P+W) . (Q+Z)

For 1.31 numbers,

1.31 + 1.31 = 2.62 and

the resultant left shift formats the number back to 1.63.

20 2-1 2-2 2-3
2-6

Copyrigh
t 2013 Cirrus Lo
DS795UM11
gic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.2.2.1 Move to Accumulator

Move from data register into 72-bit accumulator (a0=x0). See Figure 2-8 and Figure 2-9.

 Figure 2-8. Positive 32-bit Value

 Figure 2-9. Negative 32-bit Value

Before Execution

x0

31 0

1 2 3 4 5 6 7 8

a0g a0h a0l

71 64 63 32 31 0

x x x x x x x x x x x x x x x x x x

After Execution

x0

31 0

1 2 3 4 5 6 7 8

a0g a0h a0l

71 64 63 32 31 0

0 0 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0

Before Execution

x0

31 0

8 2 3 4 5 6 7 8

a0g a0h a0l

71 64 63 32 31 0

x x x x x x x x x x x x x x x x x x

After Execution

x0

31 0

8 2 3 4 5 6 7 8

a0g a0h a0l

71 64 63 32 31 0

f f 8 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0
DS795UM11 2-7
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.2.2.2 Moving from Accumulator

Each data path (A and B) has its own independent SRS unit as shown in Figure 2-2. The
SRSs are the only interface to move a value from an accumulator in a data path to the
internal X and Y data busses.

The SRS units are named in the same order that they process data – Shift first, Round
second, Saturate last.

When an accumulator is transferred to a data bus, data saturation will occur and the limit bit
in the Condition Code register is set. Examples of saturation are shown in Section 2.2.2.3.

The data shifters can shift the data coming from an accumulator one or two bits to the right,
one bit to the left, or pass the data without shifting. The data in the accumulator remains
unchanged. The shifts are controlled by the shift bits in the Mode register. Shifting facilitates
the scaling of fixed point data which is useful in implementing the block floating point
algorithms. Examples of shifting are shown in Section 2.2.2.5.

The Rounder has four modes affecting how the data in the low register of the accumulator
(i.e. a0l) is handled when an accumulator is moved onto the X or Y data bus:

• Truncate - The data in the low register is ignored.

• Add ½ then truncate - One-half of the least significant bit of the high register of the
accumulator (0x00.00000000.80000000) is added to the data in the low register
before truncation.

• Round to zero - Positive accumulators are simply truncated, but if the value of the
accumulator is negative the high register is incremented by 1 before truncation. This
exists for removing limit-cycle operations in IIR filters.

• Add dither then truncate - If the top 4 bits of the low register is larger (unsigned
comparison) than a 4-bit random number, the high register is incremented by 1 before
truncation. The 4-bit random number is actually bits 15, 13, 12, and 10 of a 16-bit
random number that is seeded at reset. The A and B SRS units have individual 16-bit
random numbers that are seeded differently at reset. The 16-bit random numbers are
post-updated after each use by the individual SRS. In other words, moving data out of
an A accumulator onto the X or Y data bus with rounding in this mode updates only the
A SRS 16-bit random number after it has been used for that comparison. Examples of
rounding are shown in Section 2.2.2.5.

Any move from a full 72-bit accumulator to a 32-bit destination (X or Y data register, X or Y
memory, peripheral space, etc.) is appropriately shifted, rounded, and saturated. Moves from
any portion of an accumulator (for example, a0h, a3l, b2g, etc.) are not affected by the
SRS unit. Additionally, the Bitwise Accumulator Move instruction (a0=+b3) does not utilize
the SRS.
2-8 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.2.2.3 Saturation Examples

Figure 2-10, Figure 2-11, and Figure 2-12 are examples of saturation:

 Figure 2-10. Positive Saturation: x0=a0

Note: 0x00c000000000000000 (1.5) is limited to 0x7fffffff (.99999999953).

 Figure 2-11. Rounding Example: Negative Saturation: x0=a0

Note: 0x80c000000000000000 (-1.5) is limited to 0x80000000 (-1).

 Figure 2-12. No Saturation: x0=a0

Note: 0xffffffffff00000000 (-.99999999953) remains unchanged as 0xffffffff
(-.99999999953).

 2.2.2.4 Rounding Examples

Table 2-1 is an example of rounding.

a0g a0h a0l

71 64 63 32 31 0

0 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x0

31 0

7 f f f f f f f

a0g a0h a0l

71 64 63 32 31 0

8 0 c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x0

31 0

8 0 0 0 0 0 0 0

a0g a0h a0l

71 64 63 32 31 0

f f f f f f f f f f 0 0 0 0 0 0 0 0

x0

31 0

f f f f f f f f

Table 2-1. Result of x0=a0 for a Given Rounding Mode (Shifting Off)

a0 Contents x0 Result Given Rounding Mode

a0g a0h a0l Truncate add .5 round to
0

dither

00 00000001 80000000 00000001 00000002 00000001 00000001 or 00000002

00 00000001 00000001 00000001 00000001 00000001 00000001 or 00000002

ff 80000000 00000001 80000000 80000000 80000001 80000000 or 80000001

ff ffffffff 80000000 ffffffff 00000000 00000000 ffffffff or 00000000
DS795UM11 2-9
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.2.2.5 Shifting Examples

Table 2-2, Table 2-3, and Table 2-4 are examples of shifting.

 2.3 Parallel Address Generation Unit
This unit consists of two sets of 12 registers - the 16-bit Index (I) registers i0-i11 and the 16-
bit modulo-offset registers nm0-nm11. The data flow for the Address Generation Unit (AGU)
is shown in Figure 2-13. A modulo-offset register consists of a modulo portion, bits [15:12],
and an offset portion, bits [11:0]. See Table 2-5 and Table 2-6. The offset portion is used to
update the index register and the modulo portion to specify the type of addressing:

• Linear

• Reverse binary

• Modulo

The offset portion is treated as a signed 12-bit number, and as such can update the address
in the corresponding index register with any value from -2048 to 2047 (0x800-0x7ff).

Table 2-2. Result of x0=a0 for a Given Shifting Mode with Rounding Set to Truncate (off)

a0 Contents x0 Result Given Rounding Mode

a0g a0h a0l No shift Right shift 1 Right shift 2 Left shift 1

00 7fffffff 00000000 7fffffff 3fffffff 1fffffff 7fffffff

01 80000001 80000000 7fffffff 7fffffff 60000000 7fffffff

ff 00000000 00000000 80000000 80000000 c0000000 80000000

40 00000000 40000000 7fffffff 7fffffff 7fffffff 80000000

Table 2-3. Result of x0=a0 for a Given Shifting Mode with Rounding Set to Add ½ then Truncate

a0 Contents x0 Result Given Rounding Mode

a0g a0h a0l No shift Right shift 1 Right shift 2 Left shift 1

00 7fffffff 00000000 7fffffff 40000000 20000000 7fffffff

01 80000001 80000000 7fffffff 7fffffff 60000000 7fffffff

ff 00000000 00000000 80000000 80000000 c0000000 80000000

40 00000000 40000000 7fffffff 7fffffff 7fffffff 80000000

Table 2-4. Result of x0=a0 for a Given Shifting Mode with Rounding Set to Round to Zero

a0 Contents x0 Result Given Rounding Mode

a0g a0h a0l No shift Right shift 1 Right shift 2 Left shift 1

00 7fffffff 00000000 7fffffff 3fffffff 1fffffff 7fffffff

01 80000001 80000000 7fffffff 7fffffff 60000000 7fffffff

ff 00000000 00000000 80000000 80000001 c0000001 80000000

40 00000000 40000000 7fffffff 7fffffff 7fffffff 80000000
2-10 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 Figure 2-13. Data Flow for the Parallel Address Generation Unit

i0
i1
i2
i3

X Address
/
16

Y Data Bus

M
ux

i4
i5
i6
i7

M
ux

X Data Bus

Y Data Bus

M
ux Address

ALU

nm4
nm5
nm6
nm7

Address
ALU

Post Increment
Post Decrement

nm0
nm1
nm2
nm3

M
ux

M
ux

16-Bit
Immediate
from
Opcode

16-Bit
Immediate
from
Opcode

Y Address
/
16

M
ux

X Data Bus

nm8
nm9
nm10
nm11

i8
i9
i10
i11

Post Increment
Post Decrement
DS795UM11 2-11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.3.1 Addressing Modes

 2.3.1.1 Modulo Addressing

Modulo addressing can be used to implement circular buffers whose size is a power of 2,
ranging from 4 to 32768. When incrementing an index register with the corresponding NM
register set for modulo addressing the index register wraps around to the beginning of the
buffer when the end of the buffer is reached. The most significant 4 bits of the NM register
control whether and how modulo addressing is used. If set to a value between 0x1 and 0xe,
modulo addressing is used with an address boundary of 2^(m+1). If set to 0x0, then linear
addressing is used. If set to 0xf, reverse binary addressing is used. See Table 2-7.

Table 2-5. Index Registers

Register
Names

Bits

i0 15 0

i1 15 0

i2 15 0

i3 15 0

i4 15 0

i5 15 0

i6 15 0

i7 15 0

i8 15 0

i9 15 0

i10 15 0

i11 15 0

Table 2-6. Increment-Modulo Registers

Register
Name

Modulo Increment

Field
Name

Bits
Field
Name

Bits

nm0 m0 15 12 n0 11 0

nm1 m1 15 12 n1 11 0

nm2 m2 15 12 n2 11 0

nm3 m3 15 12 n3 11 0

nm4 m4 15 12 n4 11 0

nm5 m5 15 12 n5 11 0

nm6 m6 15 12 n6 11 0

nm7 m7 15 12 n7 11 0

nm8 m8 15 12 n8 11 0

nm9 m9 15 12 n9 11 0

nm10 m10 15 12 n10 11 0

nm11 m11 15 12 n11 11 0
2-12 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

To use modulo addressing, circular buffers must be placed in memory such that their base
address is a multiple of their size. For example, to use modulo addressing on a 1024-sample
(0x400) circular buffer the base address of the buffer must be 0x0000, 0x0400, 0x0800,
0x0c00, 0x1000, etc. In modulo addressing mode, all index register updates (+/-1, +/-2, +/-
n) will result in an address that is within the boundaries of the buffer, except for +/-n when n is
greater than or equal to the buffer size, in which case the index register will jump out of the
circular buffer.

 2.3.1.2 Reverse Binary Addressing

Reverse binary addressing is useful for implementing Fast Fourier Transform (FFT) and
Inverse Fast Fourier Transform (IFFT) algorithms to switch the signals from time to frequency
and frequency to time domain. In writing the code for an FFT it is necessary either to get the
input data in a reverse binary (bit reverse order) or to extract the correct output data in a
reverse binary order. The number of data points or a block of data that can be reverse binary
addressed will always be a power of 2.

The reverse binary addressing is implemented by setting the value in the M register to 0xf.
Suppose the data block is 2k locations. The N register should be initialized to a value 2k-1.
The index register i is initialized to any address between the lower and upper boundary. The
lower boundary is k*2t where t is any integer. The upper boundary is (k*2t) + (2t-1). The mode
of addressing must be i1+=n.

Table 2-7. Addressing Modes, Defined by the NM Registers

MS 4 bits of NM Addressing Mode

0x0 Linear Addressing

0x1 Modulo 4

0x2 Modulo 8

0x3 Modulo 16

0x4 Modulo 32

0x5 Modulo 64

0x6 Modulo 128

0x7 Modulo 256

0x8 Modulo 512

0x9 Modulo 1024

0xa Modulo 2048

0xb Modulo 4096

0xc Modulo 8192

0xd Modulo 16384

0xe Modulo 32768

0xf Reverse Binary Addressing
DS795UM11 2-13
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.3.1.3 Immediate Addressing

This addressing mode has both long word instruction (32 bits) and short word instruction
(16 bits) versions. In the long word instruction, the address field is 16 bits, which allows
access to the X and Y memory of up to 64k locations. This addressing is used to transfer data
from memory to registers.

For example:

a0 = xmem[0x6540]

In the short word instruction, the address field is 6 bits, which allows access to the first 64
locations in X, Y, and XY memory. XY memory is the concatenation of X and Y memory with
the same address as indicated by 6-bit address field. When XY memory is used as the
source or destination of a data transfer, the destination/source should be either a pair of data
path registers or an accumulator.

For example:

x0,y0 = xymem[12] or a0 = xymem[12]

The short word instruction can be used in conjunction with an arithmetic or logic instruction.

 2.3.1.4 Indexed Addressing

This addressing mode uses long (32 bits), short (16 bits), and 8-bit instructions. Two
instructions using 8-bits can be used simultaneously along with an arithmetic or logic
instruction, but one move must use the X memory field and the other the Y memory field. One
instruction using 16 bits of the program word can be used along with an arithmetic or logical
instruction.

In the long word instruction (see Section 4.5), X, Y, and P memory can be addressed using
indexed addressing. Index registers i0-i11 are used and they can be post- incremented or
post-decremented. The updates available are +/-1, +/-2 and +/-n. The value of n is stored in
the corresponding NM Register.

In the short word instruction (see Section 4.1), X, Y, and XY memory can be addressed. XY
memory is the concatenation of the X and Y memory. XY memory is used for complex and
double moves. When XY memory is used as the source or destination of a data transfer, the
destination/source should be either a pair of data path registers or an accumulator.

The index registers used here are i0-i11, and the updates available are +/-1, +/-2 and
+/-n.

When performing parallel moves (see Section 4.2), use X memory with X data registers, A
accumulators and i0 or i1 index registers. Use Y memory with Y data registers, B
accumulators and i4 or i5 index registers. Index register updates are limited to +/-1 and +n.

Example of a valid instruction is:

a0=a0+b0; x1=xmem[i0]; i0+=n; ymem[i4]=b1; i4-=1
2-14 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.3.1.4.1 Index Register Updates

All the standard index register updates can be used without an associated move. For
example:

i0+=n

These are parallel instructions that can be paired with a MAC/ALU instruction:

a0 = x0*y0;i4-=2

Additional index register update instructions exist that are not available for use with moves.
These instructions add an immediate value to an index register and place the result in a
second index register:

i0 = i3 + (0x1234)

The target index register can be the same as the first argument:

i7 = i7 + (0x1234)

There are two forms of these instructions. One is a full word instruction that cannot be used
with any parallel instruction; this form uses a full 16-bit operand for the immediate value. The
second is a 16-bit instruction that can be paired with a MAC/ALU instruction, and is limited to
a 6-bit immediate operand and a source index register of i8-i11:

a0 = x0*y0; i0 = i9 + (0x3f)

These instructions are affected by the NM register associated with the source index register:

i2 = (0x3f)# last address of a modulo 16 buffer

nm2 = (0x3000)# set to modulo 16

nop# see “Index Register Loading Restrictions”

i3 = i2 + (0x1)# after execution, i3==0x30

(nm3 is ignored)

Example 2-2 Syntax for Index Register Updates

<index register> += 1 or 2 or n

<index register> -= 1 or 2 or n

 2.3.1.4.2 Parallel Index Register Updates

Index updates for parallel instructions can be executed in parallel with other parallel
instructions. References in syntax statements to “update” almost always have the same
update options:

+1

-1

+2

-2

+n

-n

When an instruction has fewer options than noted here, the available update options are
noted under the Restrictions subsection for each instruction. Index updates are always
optional.
DS795UM11 2-15
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.3.1.4.3 Index Register Loading

Index registers can be loaded by using register-to-register moves:

i0 = x0

or immediate data loads:

i5 = (0x1234)

Additionally, a specialized version of the full-word immediate value index update instruction
(see previous section) can be used to load data into an index register:

i0 = (0) + (0x1234)

As stated, this is a full-word instruction that takes a full 16-bit immediate value, and as such it
cannot be paired with any parallel instructions.

 2.3.1.4.4 Index Register Loading Restrictions

Due to the pipelined nature of the AGU, instructions that utilize the AGU update index
registers during the decode phase of the pipeline, which is the second of the three phases
(Fetch - Decode - Execute). This implies that any modification to an index register that occurs
during the execute phase will be undefined for any AGU operations in the subsequent
instruction. The main impact on programming is that an index register that is modified through
a register-to-register move or an immediate load is unavailable for use or update by the AGU
in the next instruction. In this example:

i0 = (0x40)

nop# this is necessary

x0 = xmem[i0]

A one-instruction buffer is required between loading and using i0. A nop was used here, but
any instruction that does not require i0 would have sufficed (and is usually preferable to avoid
wasting cycles.) If an index register is used before it is ready, the assembler will warn the
user.

Instructions that do not use the AGU are unaffected by this pipeline effect:

i0 = x0

x2 = i0# no problem here...

Note that the immediate value index update instructions use the AGU to load/add the
immediate value into the index register, so the result can be used immediately:

i0 = (0) + (0x40)

x0 = xmem[i0]# no waiting necessary

Operations performed by an instruction during the Decode phase of the instruction pipeline
can be lost if another instruction performs the same operation but in the Execute phase of the
same cycle. In the example below, the second i0 assignment is not performed because the
previous instruction performs an i0 assignment during its Execute phase. See Figure 2-14.

BitSet (i0), (0xEEEE)

i0 = (0) + (0xDDDD)
2-16 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 Figure 2-14. Execute Phase vs. Decode Phase Assignments

 2.4 Program Control Unit
The program control unit consists of a Program Counter (PC), two system stacks and two
control registers: the Mode register and the Condition Code register. The Mode Register is
the MR, the Condition Codes Register is the CCR.

 2.4.1 Program Counter

The PC is a 16-bit pointer used to indicate the location of the next instruction to fetch from
program memory.

 2.4.2 Subroutine Stack

The subroutine stack is used to store the return PC for subroutine calls. It is 16-bits wide and
implemented as a 16-entry, circular buffer with overflow and underflow interrupts. Each time
there is a call instruction the current PC is stored on the top of the stack and the call stack
pointer is auto-incremented or auto-decremented depending on the configuration of the
jsr_mode register. Conversely for a return instruction the entry at the top of the stack is
popped and is used as the next PC value.

 2.4.3 Loop Stack

The loop stack is used to store the current do-loop state (last address, first address, and
count) or do_patch state (patch length, last address, return address) when a new do-loop or
do_patch is encountered prior to completing any preceding do-loop or do_patch. It is 49-bits
wide and is implemented as an 8-entry circular buffer.

When a do-loop or do_patch is encountered, the state required to manage software flow
control is kept in a 49-bit register that appears to software as two registers lp_data1
(Table 2-14) and lp_data2 (Table 2-15). If software is executing a do-loop or do_patch and
encounters another do-loop or do_patch, the state of the current do-loop or do_patch is
pushed from lp_data to the loop stack, and the loop stack pointer is auto-incremented or
auto-decremented depending on the configuration of the lst_mode register. And, the state of
the new do-loop or do_patch is placed in lp_data. Conversely, when a do-loop or do_patch

Instruction 2

Instruction 1 F D E

F D E

i0 Assignment (performed successfully)

i0 Assignment (lost)

1

2

i0 + 12.
DS795UM11 2-17
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

has completed, the entry at the top of the stack is popped to lp_data which restores the
previous do-loop or do_patch state.

 2.4.4 Subroutine Stack and Loop Stack Common Implementations

The two stacks operate independently of each other and consist of circular buffers. Each
stack has programmable thresholds for both overflow and underflow which can be set up to
cause interrupts. Each stack can grow either up or down. Most configuration is via the
registers jsr_mode, jsr_ovf, and jsr_unf for the subroutine stack or lst_mode, lst_ovf, and
lst_unf for the loop stack. Software may directly read or write subroutine stack data via
jsr_data and loop stack data via lst_data1 and lst_data2. Note that if auto-update bits in
jsr_mode or lst_mode are not cleared, then software reads and writes of the stacks will
modify the respective stack pointers mr_jsr_ptr and mr_lst_ptr.

There are a total of five interrupt masks that are important to the proper operation of the stack
interrupts. Each stack has two maskable interrupts, one each for overflow and underflow. All
stack interrupts can be globally disabled by a global interrupt enable bit. Each individual stack
interrupt has a mask which prevents the interrupt from getting queued or recorded. On the
other hand, clearing the global stack interrupt enable bit prevents the core from taking an
interrupt request.if the individual interrupt mask bits are clear, then the interrupts are still
queued up and will be serviced the global stack interrupt enable bit is set.

Each of the stacks can be modified by software. This is done through reads and writes to
jsr_mode (Table 2-8), lst_mode (Table 2-9), mr_jsr_ptr (Table 2-11), jsr_data (Table 2-12),
mr_lst_ptr (Table 2-13), lst_data1 (Table 2-16), and lst_data2 (Table 2-17) registers. Note that
the stack pointer auto-increment and auto-decrement bits should be disabled (in jsr_mode or
lst_mode) before attempting to modify the contents of the stack, unless that behavior is
desired. Though the pointers for each stack, mr_jsr_ptr and mr_lst_ptr, are fields in the Mode
register, never modify the Mode register directly. The following Mode register fields should be
accessed through separate registers: mr_jsr_ptr, mr_lst_ptr, mr_r, mr_s, or mr_sr.

Several additional registers are useful for handling overflow and underflow of the stacks:
jsr_ovf (Table 2-18), jsr_unf (Table 2-15), lst_ovf (Table 2-16), lst_unf (Table 2-17). When an
underflow or an overflow condition occurs and the appropriate interrupt mask is set, interrupts
are queued but held for execution. As long as the stack interrupt enable mask is set the core
will fetch an ISI (interrupt service instruction) from the stack ISR (interrupt service routine)
table and execute it. By default the stack ISR table is located immediately after the PIC
(peripheral interrupt controller) ISR table. Typically the 32 ISIs for the PIC ISR table will be
located at 0x0000-0x001f and the 4 ISIs for the stack ISR table will be located at 0x0020-
0x0023. If the stack ISR needs to be relocated, simply modify bits [15:2] of the stq_base
(Table 2-10) with the desired address. Bits [1:0] of the stq_base register always read as 0.
2-18 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.4.5 jsr_mode Register

jsr_wr_inc_dec This feature is only available when the “auto-update on
write” bit, jsr_wr_ptr_en is set. If so, auto-increment or
auto-decrement the respective stack pointer when the top
of the stack is written.

jsr_wr_pt_en When set, a write to the respective stack will update (auto-
increment or auto-decrement) the stack pointer.

jsr_rd_inc_dec This feature is only available when the “auto-update on
read” bit, jsr_rd_ptr_en is set. If so, auto-increment or
auto-decrement the respective stack pointer when the top
of the stack is read.

jsr_rd_ptr_en When set, a read of the respective stack will update (auto-
increment or auto-decrement) the stack pointer.

jsr_ovf_imask When zero, this bit disables interrupts that would
otherwise be generated by an overflow condition.

jsr_unf_imask When zero, this bit disables interrupts that would
otherwise be generated by an underflow condition.

jsr-int-en This bit is equivalent in function to the MR[7] bit, except it
is used for stack interrupts. Clearing this bit prevents the
DSP from taking requests for either underflow or overflow
interrupts. However, interrupts are still queued, assuming
the corresponding mask bits are set.

auto-stq This bit enables an un-supported stack mode. It should
always be kept clear (0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved * * * * * * * *

x x x x x x x x 1 0 0 0 0 0 1 0

Table 2-8. jsr_mode Bit Definitions

Bits Field/Flag Name Description

15:8 Reserved Reserved.

7 jsr_wr_inc_dec Auto increment(1) / auto-decrement(0) on write.

6 jsr_wr_ptr_en Enable pointer auto-update on write.

5 jsr_rd_inc_dec Auto incremnt(1) / auto decrement(0) on read.

4 jsr_rd_ptr_en Enable pointer auto-update on read.

3 jsr_ovf_imask Overflow interrupt mask. (Disable overflow interrupt.)

2 jsr_unf_imask Underflow interrupt mask. (Disable underflow interrupt.)

1 jsr_int_en Call-stack interrupt enable.

0 jsr_auto_stq Auto-stack mode enable. (Reserved)
DS795UM11 2-19
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.4.6 lst_mode Register

lst_wr_inc_dec This feature is only available when the “auto-update on
write” bit, lsr_wr_ptr_en is set. If so, auto-increment or
auto-decrement the respective stack pointer when the top
of the stack is written.

lst_wr_pt_en When set, a write to the respective stack will update (auto-
increment or auto-decrement) the stack pointer.

lst_rd_inc_dec This feature is only available when the “auto-update on
read” bit, lsr_rd_ptr_en is set. If so, auto-increment or
auto-decrement the respective stack pointer when the top
of the stack is read.

lst_rd_ptr_en This bit controls whether a read of the respective stack will
update (auto-increment or auto-decrement) the stack
pointer.

lst_ovf_imask When zero, this bit disables interrupts that would
otherwise be generated by an overflow condition.

lst_unf_imask When zero, this bit disables interrupts that would
otherwise be generated by an underflow condition.

lst-int-en This bit is equivalent in function to the MR[7] bit, except it
is used for stack interrupts. Clearing this bit prevents the
DSP from taking requests for either underflow or overflow
interrupts. However, interrupts are still queued, assuming
the corresponding mask bits are zero.

auto-stq This bit enables an un-supported stack mode. It should
always be kept clear (0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved * * * * * * * *

x x x x x x x x 1 0 0 0 0 0 1 0

Table 2-9. lst_mode Bit Definitions

Bits Field/Flag Name Description

15:8 Reserved Reserved.

7 lst_wr_inc_dec Auto increment(1) / auto-decrement(0) on write.

6 lst_wr_ptr_en Enable pointer auto-update on write.

5 lst_rd_inc_dec Auto incremnt(1) / auto decrement(0) on read.

4 lst_rd_ptr_en Enable pointer auto-update on read.

3 lst_ovf_imask Overflow interrupt mask. (Disable overflow interrupt.)

2 lst_unf_imask Underflow interrupt mask. (Disable underflow interrupt.)

1 lst_int_en Call-stack interrupt enable.

0 lst_auto_stq Auto-stack mode enable. (Reserved)
2-20 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.4.7 stq_base Register

 2.4.8 mr_jsr_ptr Register

This is the index of the next entry to which data will be pushed and/or the index of the last
entry popped. It appears as a field in Mode Register but should be modified here.

 2.4.9 jsr_data Register

The top of the call stack is (mr_jsr_ptr - 1) mod 16.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

stq_isr_base_addr Rsvd.

0 0 0 0 0 0 0 0 0 0 1 0 0 0 x x

Table 2-10. stq_base Bit Definitions

Bits Field/Flag Name Description

31:16 Reserved Reserved.

15:2 stq_isr_base_addr ISR base address.

1:0 Reserved Reserved.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved mr_jsr_ptr

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2-11. mr_jsr_ptr Bit Definitions

Bits Field/Flag Name Description

3:0 mr_jsr_ptr Call stack pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

jsr_data

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2-12. jsr_data Bit Definitions

Bits Field/Flag Name Description

15:0 jsr_data PC value at top of call stack.
DS795UM11 2-21
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.4.10 mr_lst_ptr Register

This is the index of the next entry to which data will be pushed and/or the index of the last
entry popped. It appears as a field in Mode Register but should be modified here.

 2.4.11 lp_data1 Register

 2.4.12 lp_data2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved mr_lst_ptr

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2-13. mr_lst_ptr Bit Definitions

Bits Field/Flag Name Description

2:0 mr_lst_ptr Loop stack pointer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

lp_lad

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lp_fad

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2-14. lp_data1 Bit Definitions

Bits Field/Flag Name
Description

do loop do_patch

31:16 lp_lad Top of loop stack last address Top of loop stack last address

15:0 lp_fad Top of loop stack first address Return address: just after do_patch instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved type

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lp_cnt

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Table 2-15. lp_data2 Bit Definitions

Bits Field/Flag Name Description

16 type 0 for do loop 1 for do_patch

15:0 lp_cnt Top of loop stack count Length of patch
2-22 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.4.13 lst_data1 Register

The top of the loop stack is (mr_lst_ptr - 1) mod 8.

 2.4.14 lst_data2 Register

The top of the loop stack is (mr_lst_ptr - 1) mod 8.

 2.4.15 jsr_ovf Register

An exception occurs when mr_jsr_ptr is incremented past jsr_ovf and the exception is
enabled in the jsr_mode register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

lp_lad

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lp_fad

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2-16. lst_data1 Bit Definitions

Bits Field/Flag Name
Description

do loop do_patch

31:16 lp_lad Top of loop stack last address Top of loop stack last address

15:0 lp_fad Top of loop stack first address Return address: just after do_patch instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved type

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lp_cnt

0 0 0 0 0 0 0 0 0 0 1 0 0 0 x x

Table 2-17. lst_data2 Bit Definitions

Bits Field/Flag Name Description

16 type 0 for do loop 1 for do_patch

15:0 lp_cnt Top of loop stack count Length of patch

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved jsr_ovf

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Table 2-18. jsr_ovf Bit Definitions

Bits Field/Flag Name Description

3:0 jsr_ovf Subroutine stack overflow threshold
DS795UM11 2-23
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.4.16 jsr_unf Register

An exception occurs when mr_jsr_ptr is decremented to jsr_unf and the exception is enabled
in the jsr_mode register.

 2.4.17 lst_ovf Register

An exception occurs when mr_lst_ptr is incremented past lst_ovf and the exception is
enabled in the lst_mode register.

 2.4.18 lst_unf Register

An exception occurs when mr_lst_ptr is decremented to lst_unf and the exception is enabled
in the lst_mode register.

 2.4.19 Mode Register

The Mode register is a 16-bit register defined as follows. Specific bits of the Mode register
can be accessed for reading and writing through designated bitfield registers, shown in
Table 2-22.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved jsr_unf

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2-19. jsr_unf Bit Definitions

Bits Field/Flag Name Description

3:0 jsr_ovf Subroutine stack underflow threshold

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved jsr_ovf

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Table 2-20. lst_ovf Bit Definitions

Bits Field/Flag Name Description

2:0 lst_ovf Loop stack overflow threshold

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved lst_unf

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2-21. lst_unf Bit Definitions

Bits Field/Flag Name Description

2:0 lst_unf Loop stack underflow threshold

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

mr_jsr_ptr mr_int_p mr_lst_ptr mr_int reserved Ls R1 R0 S1 S0
2-24 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

Note: Register mr_sr can be used to set bits [3:0] of the mode register with a single constant.

[19:16] mr_stq_queue_sticky is used to know whether two stack exceptions occurred at the
same time so that after one is serviced, the other may also be. Otherwise, under certain
conditions, a stack interrupt may be lost.

Note: These are all sticky and must be cleared by firmware.

[11] mr_int_p is used to know whether to enable interrupts or not when returning from a stack
ISR.

Table 2-22. Mode Register Bit Definitions

Bits Field/Flag Name Description

19 mr_jsr_ovf
Set whenever a call stack overflow occurs.
Note: Applicable only for CS48L20.

18 mr_jsr_unf
Set whenever a call stack underflow occurs.
Note: Applicable only for CS48L20.

17 mr_lst_ovf
Set whenever a loop stack overflow occurs.
Note: Applicable only for CS48L20.

16 mr_lst_unf
Set whenever a loop stack underflow occurs.
Note: Applicable only for CS48L20.

15:12 mr_jsr_ptr Call stack pointer.

11 mr_int_p
Set to previous value of mr_int whenever an interrupt of any kind occurs;
can be written by firmware but need not be (CS48L20 only).

10:8 mr_lst_ptr Loop stack pointer.

7 mr_int Interrupt enable/disable bit.

6:5 Reserved Reserved.

4 Ls
Least significant bit - If set to one, data moved from the low part of an
accumulator (such as a0l) will be logically shifted right one bit.

3:2
mr_r

R1, R0

Round mode bits. Defined as:
R1 R0 Round Mode
00 No round
01 Add 0.5 then truncate
10 Round to 0
11 Add dither then truncate
Note: When setting these bits using the mr_r register, bits [3:2] of the
mr_r register must be set to affect R1, R0.

1:0
mr_s

S1, S0

Shift mode bits. Defined as:
S1 S0 Shift Mode
00 No shift
01 Shift right
10 Shift right twice
11 Shift left
DS795UM11 2-25
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.4.20 Condition Code Register

The Condition Code register contains flags that are affected by various instructions in the
DSP. The bits of the Condition Code register are defined in Table 2-23.

Example of how T1 and T0 are affected by various accum + shift values:

 2.4.21 Loop Stack Example

The operation of the loop stack is best illustrated by working through an example. Though the
loop stack contains only eight entries, it is possible to extend it using software to initialize and
manage a much larger software stack. In this way, the loop stack appears larger to the
software that uses it. In this example, the software consists of some initialization code and a
stack overflow and stack underflow exception handler. The code that follows represents one
possible way to implement a software loop stack. Better and more complex approaches may
be used. In particular, more error handling might be added or some hysteresis put in to the
underflow/overflow interaction to minimize stack exceptions in certain cases.

Note that the subroutine stack operates similarly to the loop stack, except that it has 16
entries and its entries are each 16 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Z L BS AS B0 A0 T1 T0

Table 2-23. Condition Code Register Bit Definitions

Bits Field/Flag Name Description

15:8 Reserved Reserved.

7 Z Zero bit - Set by the bit manipulation instructions.

6 L Limit bit - Set when saturation occurs: after it is set, it must be cleared by software.

5 BS B sign bit - Set when the B accumulator result is negative.

4 AS A sign bit - Set when the A accumulator result is negative.

3 B0 B zero bit - Set when the B accumulator result is zero.

2 A0 A zero bit - Set when the A accumulator result is zero.

1:0 T1, T0
Shift mode status bits. T1 and T0 are set depending on the [63:59] bits of the accumulator
and the value of s1 and s0 in the MR. See example in Table 2-24.

Table 2-24. T1, T0 with Various Accum + Shift Values

Accum values [63:59] T1 T0 Shift

00000 or 11111 0 0 No shift

00001 11110 0 0 No shift

00010 11101 0 0 No shift

00011 11100 0 1 Shift

00100 11011 0 1 Shift

00101 11010 0 1 Shift

0011x 1100x 1 0 Shift twice

01xxx 10xxx 1 0 Shift twice

1 1 Not used
2-26 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

For the loop stack, several factors do not vary:

• mr_lst_ptr always points to the next stack entry to be pushed and/or the last entry
popped.

• lp_state is the next data to be pushed and/or the last entry popped.

• lst_data is always the data at entry (mr_lst_ptr - 1) mod 8.

• An overflow exception occurs when data is pushed onto the stack such that mr_lst_ptr
is incremented past the overflow threshold and the exception is enabled, that is, all of
the following are true:

• lst_mode.lst_ovf_imask = 1

• lst_mode.lst_int_en = 1

• (mr_lst_ptr - 1) mod 8 = lsf_ovf

• previous clock cycle mr_lst_ptr = lst_ovf

• An underflow exception occurs when data is popped from the stack such that mr_lst_ptr
is decremented to the underflow threshold, and the exception is enabled, that is, all of
the following are true:

• lst_mode.lst_unf_imask = 1

• lst_mode.lst_int_en = 1

• mr_lst_ptr = lsf_unf

• previous clock cycle (mr_lst_ptr - 1) mod 8 = lst_unf

• At hardware reset, lp_state is 0x0000000. This means that the first data pushed onto
the loop stack is always meaningless and should not be used.

Consider Figure 2-15 and Figure 2-16, which show the hardware related to the loop stack as
it changes over time. Each figure shows:

• The loop stack, an eight entry circular buffer for holding 49-bit data. The entries are
numbered 0 through 7.

• The lp_state register for holding 4- bit data.

• the lst_data register, which is just one of the entries in the loop stack.

• the lst_unf, lst_ovf, and mr_lst_ptr values, represented by arrows. mr_lst_ptr is the
unlabeled one.

The 49-bit data is flow control management information for either a do loop or do_patch
instruction. The particular values are not important here. Instead, this data is represented by
unique capital letters in the figures.

To make use of the loop stack, it is assumed in this example that, during normal operation,
lst_unf = (lst_ovf + 1) mod 8. This setting allows overflow and underflow to be detected
properly. The left half of each diagram represents states before an overflow or underflow ISR,
while the right half shows states after an overflow or underflow ISR.
DS795UM11 2-27
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 Figure 2-15. Loop Stack Overflow Example

Figure 2-15 illustrates how the hardware loop stack could overflow, causing seven entries to
be pushed to the software stack. The loop stack initially contains four valid entries, A through
D. Over time, four more entries, E through H, are pushed onto the stack. At this point, an
overflow exception occurs. The overflow exception handler pushes seven entries in the
hardware stack, A through G, onto the software stack. It also updates the overflow and
underflow thresholds. Upon return from the ISR, the loop stack has seven free spaces
instead of none, and lp_state and lst_data are unchanged. Then, over time, another entry, I,
is pushed onto the stack.

B

A

B

A

E

D

C

D

C

Lo
op

 s
ta

ck
7

6

5

4

3

2

1

0

B

A

F

E

D

C

B

A

G

F

E

D

C

B

H

I

H

E F G H I I J

D E F G H IH

lp_state

lst_data

lst_unf

lst_ovf

p
u

sh

p
u

sh

p
u

sh

p
u

sh

p
u

sh

ls
t_

ov
f

ex
ce

pt
io

n

lst_ovf ISR

lst_unf

lst_ovf

Time

A

H

G

F

E

D

C

2-28 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 Figure 2-16. Loop Stack Underflow Example

Figure 2-16 shows how the hardware loop stack could then underflow, causing the same
seven entries to be removed from the software stack and restored to the hardware stack. The
loop stack initially contains two valid entries, H and I. Over time, two more entries, J and K,
are pushed onto the stack. Then, four entries, H through K, are popped. At this point, an
underflow exception occurs. The underflow exception handler pops seven entries from the
software stack, A through G, and places them back in the hardware loop stack. It also
updates the overflow and underflow thresholds. Upon return from the ISR, the loop stack has
one free space instead of eight, lp_state is unchanged, and lst_data contains the next entry
to be popped. Over time, another entry, G, is popped from the stack.

The examples below provide example code to set up and control the hardware and software
loop stack. First consider the set-up code. The code sets the stack ISR base, and initializes
the list stack hardware configuration such that:

• The mr_lst_ptr auto increments on read and write.

• Overflow interrupt is enabled.

• Underflow interrupt is not enabled for now since the stack is assumed to be empty.

• The overflow threshold is set such that on the eighth push, an exception occurs.

• The underflow threshold is set such that if a pop empties the stack, an exception would
occur if enabled.

Lo
op

 s
ta

ck

7

6

5

4

3

2

1

0

I

H

J

I

lp_state

lst_data

ls
t_

un
f

ex
ce

pt
io

n

lst_unf ISR

lst_unf

lst_ovf

Time

K

J

J

I

H

L

M

J

I

H

K

pu
sh

pu
sh

po
p

K

J

J

I

H

I

H

J

I

po
p

po
p

H

I

H

H

B

A

G

F

E

D

C

H

G

B

A

F

E

D

C

G

F
po

p

po
p

lst_unf

lst_ovf
DS795UM11 2-29
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

If the underflow interrupt is enabled when the stack is empty, every time the stack becomes
empty again, an underflow interrupt would occur, though underflow has actually not occurred.

The regs_stack is a small X-memory area for storing at least DSP register i11 in all stack
ISRs. The isr_stack is a small X-memory area for storing more DSP registers within all stack
ISRs. The soft_lst_ptr is an X-memory address whose value points to the top of the software
list stack, initially at address 0x100 in both X and Y memory. The software stack will grow
upward from address 0x100 in both X and Y memory as the hardware stack overflows, and
shrink downward as the hardware stack underflows.

Example 2-3

 The code starting at address 0x0024 should be something like the following:

Example 2-4

This set-up insures that the list stack underflow and overflow ISRs will be called properly.

The overflow ISR takes the following actions:

• Saves some registers so they can be reused locally.

• Updates the overflow and underflow thresholds by decrementing each by one.

• Saves seven stack entries by copying them from the hardware stack to the software
stack.

• Updates the software list stack pointer in memory by incrementing by seven.

• Enables underflow interrupts.

• Restores saved registers.

• Determine how to finish the ISR.

After the ISR, the lp_state, mr_lst_ptr, and lst_data registers are unchanged, but seven
entries are now available for pushing onto the hardware list stack. Looking at Figure 2-15, the
value of N as used in the code example is 5.

Initialization

regs_stack .bss (8) # Stores i11 throughout stack ISRs

isr_stack .bss (8) # Stores other registers during all stack ISRs

soft_lst_ptr .bsc 1, (0x100) # Stores list stack entries

stq_base = (0x0024) # Location os ISR table

lst_mode = (0xfa) # Enable auto inc on rd/wr, ovf exception

lst_unf = (0x00) #

lst_ovf = (0x07) #

ISR table 0x0024 through 0x0025

 callint_stq ISR_lst_unf

 callint_stq ISR_lst_ovf
2-30
 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

Example 2-5
loop stack overflow ISR
#
ISR_lst_ovf:
 xmem[regs_stack] = i11 # Push i11
 i11 = xmem[isr_stack] # i11 is ISR stack pointer
 xmem[i11] = ccr; i11+=1 # Push registers to isr_stack
 xmem[i11] = x0; i11+=1

ISR_lst_ovf_jmp: # Entry point from call stack ISRs
 xmem[i11] = i0; i11+=1 # Push register to isr_stack

 i0 = xmem[soft_lst_ptr] # i0 is software list stack pointer

 # Save seven entries from hardware stack to software stack.
 # Update lst_unf and lst_ovf by decrementing each by 1.
 # Assume lsf_ovf = N, lst_unf = mr_lst_ptr = (N+1) mod 8
 x0 = lst_data2 # increment stack pointer to (N+2) mod 8
 xmem[i0] = lst_data1 # save stack entry (N+2) mod 8
 ymem[i0] = lst_data2;i0+=1
 xmem[i0] = lst_data1 # save stack entry (N+3) mod 8
 ymem[i0] = lst_data2;i0+=1
 xmem[i0] = lst_data1 # save stack entry (N+4) mod 8
 ymem[i0] = lst_data2;i0+=1
 xmem[i0] = lst_data1 # save stack entry (N+5) mod 8
 ymem[i0] = lst_data2;i0+=1
 xmem[i0] = lst_data1 # save stack entry (N+6) mod 8
 ymem[i0] = lst_data2;i0+=1
 x0 = mr_lst_ptr # x0 is (N+7) mod 8
 lst_ovf = x0 # decrement overflow threshold to (N+7) mod 8
 xmem[i0] = lst_data1 # save stack entry (N+7) mod 8
 ymem[i0] = lst_data2;i0+=1
 x0 = mr_lst_ptr # x0 is N
 lst_unf = x0 # decrement underflow threshold to N
 xmem[i0] = lst_data1 # save stack entry (N+7) mod 8
 ymem[i0] = lst_data2;i0+=1 # stack pointer becomes (N+1) mod 8
 xmem[soft_lst_ptr] = i0 # update software list stack pointer by
 # incrementing by 7

 i11-=1 # Restore register
 i0 = xmem[i11]

 lst_mode = (0x00fc) # Enable list stack underflow interrupt

 x0 = mr # Clear list stack overflow request
 bitclr hi(x0), (0x0002)
 mr = x0
 jmp ISR_lst_finish # Finishing is same for both list ISRs
DS795UM
11 2-31
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

The underflow ISR takes these actions:

• Saves some registers so they can be reused locally.

• Updates the software list stack pointer in memory by decrementing by seven.

• Updates the overflow and underflow thresholds by incrementing each by one.

• Restores seven stack entries by copying them from the software stack to the hardware
stack.

• Checks if the software stack is empty; if so, disable underflow interrupts.

• Restores saved registers.

• Determine how to finish the ISR.

After the ISR, the lp_state register and mr_lst_ptr register are unchanged, and the value
apparent in lst_data is what is expected, as seven entries have just been restored to the
hardware list stack. Looking at Figure 2-16, the value of N as used in the code example is 5.
2-32 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

Example 2-6
loop stack underflow ISR
#
ISR_lst_unf:
 xmem[regs_stack] = i11 # Push i11
 i11 = xmem[isr_stack] # i11 is ISR stack pointer
 xmem[i11] = ccr; i11+=1 # Push registers to isr_stack
 xmem[i11] = x0; i11+=1

ISR_lst_unf_jmp: # Entry point from call stack ISRs
 xmem[i11] = x1; i11+=1 # Push registers to isr_stack
 xmem[i11] = i0; i11+=1
 xmem[i11] = b0; i11+=1
 xmem[i11] = b1; i11+=1

 i0 = xmem[soft_lst_ptr] # i0 is software list stack pointer
 nop
 i0 = i0-(7)
 xmem[soft_lst_ptr] = i0

 # Restore seven entries from software stack to hardware stack.
 # Update lst_unf and lst_ovf by incrementing each by 1.
 # Asume lst_ovf = (N-1) mod 8, lst_unf = mr_lst_ptr = N.
 x0 = mr_lst_ptr # x0 is entry just popped
 lst_ovf = x0 # increment overflow threshold to N
 x1 = lst_data2 # increment stack pointer to (N+1) mod 8
 x1 = mr_lst_ptr # x1 is (N+1) mod 8
 lst_unf = x1 # increment underflow threshold to (N+1) mod 8
 lst_data1 = xmem[i0] # restore stack entry (N+1) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+2) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+3) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+4) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+5) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+6) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+7) mod 8
 lst_data2 = ymem[i0];i0+=1 # stack pointer becomes N

 b0 = 0 # Disable underflow interrupts
 lo16(b0) = (soft_lst1 + 7) # if software loop stack is empty
 b1 = i0
 b0 - b1
 if (b != 0) jmp ISR_lst_unf_finish
 lst_mode = (0x00f8)

loop stack underflow ISR
#
ISR_lst_unf:
 xmem[regs_stack] = i11 # Push i11
 i11 = xmem[isr_stack] # i11 is ISR stack pointer
 xmem[i11] = ccr; i11+=1 # Push registers to isr_stack
 xmem[i11] = x0; i11+=1

ISR_lst_unf_jmp: # Entry point from call stack ISRs
 xmem[i11] = x1; i11+=1 # Push registers to isr_stack
 xmem[i11] = i0; i11+=1
 xmem[i11] = b0; i11+=1
 xmem[i11] = b1; i11+=1

 i0 = xmem[soft_lst_ptr] # i0 is software list stack pointer
 nop
 i0 = i0-(7)
 xmem[soft_lst_ptr] = i0

 # Restore seven entries from software stack to hardware stack.
 # Update lst_unf and lst_ovf by incrementing each by 1.
 # Asume lst_ovf = (N-1) mod 8, lst_unf = mr_lst_ptr = N.
 x0 = mr_lst_ptr # x0 is entry just popped
 lst_ovf = x0 # increment overflow threshold to N
 x1 = lst_data2 # increment stack pointer to (N+1) mod 8
 x1 = mr_lst_ptr # x1 is (N+1) mod 8
 lst_unf = x1 # increment underflow threshold to (N+1) mod 8
 lst_data1 = xmem[i0] # restore stack entry (N+1) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+2) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+3) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+4) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+5) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+6) mod 8
 lst_data2 = ymem[i0];i0+=1
 lst_data1 = xmem[i0] # restore stack entry (N+7) mod 8
 lst_data2 = ymem[i0];i0+=1 # stack pointer becomes N

 b0 = 0 # Disable underflow interrupts
 lo16(b0) = (soft_lst1 + 7) # if software loop stack is empty
 b1 = i0
 b0 - b1
 if (b != 0) jmp ISR_lst_unf_finish
 lst_mode = (0x00f8)
DS795U
M11 2-33
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

Each list stack ISR ends the same way–a decision must be made between several options:

• jmp directly to a call stack interrupt handler:

• overflow

• underflow

• Return to interrupted code with stack interrupts enabled and:

• Interrupts enabled

• Interrupts disabled

To determine if it is necessary to jump directly to a call stack interrupt, it is only necessary to
check the state of the mr_jsr_ovf and mr_jsr_unf bits. Otherwise, to determine whether to
re-enable interrupts when returning to interrupted code, it is only necessary to check the
mr_int_p bit. Example 2-7 illustrates these decisions as well as restoring registers as
needed.

ISR_lst_unf_finish:
 i11-=1 # Restore some saved registers
 b1 = xmem[i11]; i11-=1
 b0 = xmem[i11]; i11-=1
 i0 = xmem[i11]; i11-=1
 x1 = xmem[i11]

 x0 = mr # Clear list stack underflow request
 bitclr hi(x0), (0x0001)
 mr = x0

 jmp ISR_lst_finish # Finishing is same for both list ISRs
2-34
 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

Example 2-7

Note that both list stack ISRs share the same startup code. They save i11, ccr, and x0, and
update i11 to point to the isr_stack. Similarly, on return from either handler, these registers
are restored.

The call stack ISRs should be very similar to the list stack ISRs, differing in the size of the
hardware stack and the location of relevant status and control bits. Hence, it should be
assumed in this example that i11, ccr, and x0 are still saved when jumping directly from a call
stack ISR to a jump stack ISR or vice versa.

In the interrupted code, only one list stack interrupt and one call stack interrupt should ever
occur at the same time. The stack ISRs themselves do not utilize the list stack or call stack
directly, that is, there are no calls, do_patch, or do loops within these ISRs. Hence, stack
ISRs do not ever trigger more stack ISRs.

ISR_lst_finish:
 bitchg hi(x0), (0x000f) # If call overflow/underflow, handle ...
 nop
 bittst hi(x0), (0x000c)
 if (z==0) jmp ISR_lst_pending_stq

 x0 = mr # No other stack interrupt.
 bittst lo(x0), (0x0800) # If called with interrupts enabled, handle ...
 if (z==0) jmp ISR_lst_ret

ISR_lst_retint_stq: # Return with interrupts enabled.
 i11-=1 # Restore more registers
 x0 = xmem[i11]; i11-=1
 ccr = xmem[i11]
 xmem[isr_stack] = i11 # Remember isr_stack pointer
 i11 = xmem[regs_stack] # Restore i11
 retint_stq

ISR_lst_ret: # Return with interrupts disabled
 x0 = lst_mode # Enable list stack interrupts.
 bitset lo(x0), 0x0002
 lst_mode = x0
 x0 = jsr_mode # Enable call stack interrupts
 bitset lo(x0), 0x0002
 jsr_mode = x0
 i11-=1 # Restore more registers
 x0 = xmem[i11]; i11-=1
 ccr = xmem[i11]
 xmem[isr_stack] = i11 # Remember isr_stack pointer
 i11 = xmem[regs_stack] # Restore i11
 ret

ISR_lst_pending_stq: # Call stack interrupt pending.
 bittst hi(x0), (0x0008) # Which one?
 if (z==0) jmp ISR_jsr_ovf_jmp # If call overflow, do it.
 jmp ISR_jsr_unf_jmp # else do call underflow.
DS795
UM11 2-35
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.5 Master State Registers (MSREGS)
The Master State Registers are registers that exist within the core, but are separate from the
AGU and ALU/MAC registers. These registers control internal configuration, provide visibility
into the current state. Specific full-word instructions exist for reading and writing the Master
State Registers to and from memory, peripheral space, and other registers. Immediate data
loads and the Bit Manipulation instructions also work with the Master State Registers. In all
instructions, the Master State Registers are referred to in the syntax by their name as
specified in Table 2-25:

x0 = page_p

bittst (mr), (0x0002)

search_latch = xmem[0x1234]

]

Table 2-25. Master State Registers

Register Syntactical Name

Shift bits of Mode Register (S1 S0) mr_s

Round bits and right shift bits (Ls R1 R0) mr_r

Round bits and shift bits (Ls R1 R0 S1 S0) mr_sr

Condition Code Register ccr

Stack base address stq_base

Call stack mode register jsr_mode

Loop stack mode register lst_mode

Search Count search_cnt

Call stack pointer from the Mode Register mr_jsr_ptr

Call stack overflow value jsr_ovf

Call stack underflow value jsr_unf

Search Latch register search_latch

Loop stack pointer from the Mode Register mr_lst_ptr

Loop stack overflow value lst_ovf

Loop stack underflow value lst_unf

Reserved N/A

P Page for external memory page_p

X Page for external memory page_x

Y Page for external memory page_y

Random Number Register rand

See Section 2.5.2 on page 37. rand_reset

Dither register A rand_a

Dither register B rand_b

Top of loop stack;
31:16 last address, 15:0 first address

lst_data1

Top of loop stack; 15:0 cnt lst_data2

Current loop value;
31:16 last address, 15:0 first address

lp_data1

Current loop value; 15:0 cnt lp_data2

Program Counter pc

Program Counter for Breakpoints pc_bp

PC value at top of call stack jsr_data
2-36 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.5.1 Search Registers

When finding the maximum or minimum value of a buffer in memory, it is often desirable not
only to know what that value is, but where it was located in the buffer. The Search Count
Register, search_cnt, and Search Latch Register, search_latch, can be used to
accomplish this task. Whenever a “Conditional Operation” is performed, the Search Count
Register is incremented, and whenever a MAX or MIN instruction results in the accumulator
move the search count register is copied into the search latch register. Consider the following
code fragment:

Example 2-8

i0 = (X_BX_data1) # i0 set to the beginning of a buffer

search_cnt = i0 # Search Count Register and search

search_latch = i0 # Latch Register set to i0

a0 = xmem[i0]; i0+=1 # find minimum of buffer, leave in b0

b0 = a0

do (64),>

%: if (a0<b0) b0=a0; a0 = xmem[i0]; i0+=1

At the end of the loop, the search latch register contains the address of the minimum value,
such that if you then execute:

Example 2-9

i1 = search_latch

nop

x0 = xmem[i1]

x0 now equals b0.

 2.5.2 Random Number Generator

The DSP core has three hardware-based random number generators. The first one, called
the PSR, generates 32-bit random data from a 16-bit seed which is updated each time a
random number is generated. The PSR register is the only one of the three that is readable
(from a programmer's perspective). The other two 4-bit random number generators are called
Dither A and Dither B and each are generated independently from their own 16-bit seeds.
They are only used when the Mode Register bits MR[3:2], also known as MR[R1: R0], are
both set and data is moved through the respective SRS A/B (Shift Round Saturate). The
purpose of setting MR[3:2] is to select the “add dither and truncate” mode so dither can be
added to the lower-order bits of the accumulator as it passes through the SRS.
DS795UM11 2-37
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

New random numbers from the PSR are generated by reading the MSREG rand. By default,
the seed for the PSR will be 0x0000 unless the MSREG rand_reset is written. The MSREG
rand_reset is limited to 16-bits. Any higher-order bits that are written to it will be ignored. The
current PSR seed can be obtained by reading the MSREG rand_reset. Each time the PSR is
read and a new random number is generated a new PSR seed will be written to the MSREG
rand_reset.

The 16-bit Dither A and Dither B registers are updated with new values when data is moved
through the respective SRS in the “add dither and truncate” mode. For Dither A, the move
must use an An accumulator. For Dither B, the move must be use a Bn accumulator. It is not
possible to use SRS A or Dither A on a Bn accumulator. Likewise, it is not possible to use
SRS B or Dither B in conjunction with an accumulator. By default the seed for Dither A and
Dither B will be 0x0010 and 0x0030 respectively. Each dither seed is limited to 16-bits. Any
higher-order bits that are written will be ignored. The current Dither A and B registers can be
read from MSREG rand_a and MSREG rand_b respectively. The values will not be updated
when read by the programmer.

 2.6 Interrupt Controller
The Interrupt Controller prioritizes 32 peripheral interrupt requests. The interrupt priority is
fixed; 0 is highest and 32 is lowest. For a given interrupt service routine (ISR), a single
instruction corresponding to that interrupt is inserted directly into the instruction pipeline. This
is called an Interrupt Service Instruction (ISI). All ISIs reside in the first 32 locations of
program memory (addresses 0x0000-0x001F).

The core has three categories of interrupts. Interrupts can be generated from the DBC
(debug controller), the subroutine and do-loop stacks, and the PIC (peripheral interrupt
controller). The DBC has the highest priority. Second is priority are the stack interrupts. Last
in priority are the standard interrupts from the PIC.

 2.6.1 Fast Interrupts

Interrupts that consist solely of a single instruction are referred to as fast interrupts.

 2.6.2 Long Interrupts

If an interrupt needs to execute more than one instruction, the callint instruction is used for
the ISI. This is referred to as a long interrupt. The callint instruction disables interrupts,
pushes the program counter (PC) onto the subroutine stack, and starts executing the
specified ISR. The final instruction of the ISR should be ret_int, which pops the PC and
enable interrupts. The call or jmp instructions can also be used as ISIs, but they will not
disable interrupts, allowing the possibility of code re-entrance.

 2.6.3 Masking

There are two 32-bit registers that govern interrupt operation: IMask and IRMask. They are
accessible from the peripheral space as imask and irmask.
2-38 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.6.3.1 IMask

IMask is the interrupt enable/disable mask. Every bit corresponds to 1 of 32 possible
interrupts numbered 31-0 and corresponding to mask bits [31:0]. If a bit is 1, then that
interrupt is enabled. The default value after reset is 0x0000.

 2.6.3.2 IRMask

IRMask is the interrupt “run” mask, which affects how the DSP handles interrupts while in the
Halt state. If an IRMask bit (31-0) corresponding to a particular interrupt is 1, then execution
of that ISI will bring the processor out of Halt. Otherwise, the instruction is executed without
the processor being brought out of Halt with no further instructions occurring, even if the
interrupt instruction is a callint, call, or jmp. For this reason, long interrupts that might be
triggered while the processor is in Halt should have the corresponding bit in the IRMask set.
The default value after reset is 0x0000.

 2.7 Instruction Restrictions
There are some cases where certain combinations of instructions which affect MSREGs can
produce an undesired result. These cases are limited to the modification of any MSREG by
two different, but overlapping operations. In order to guarantee this problem will not occur,
MSREG modifications should be avoided one cycle after or before any bits in the same
register could be affected by an operation. Simply add a NOP before or after any MSREG
access to avoid this problem.

For example, a conditional jump could be taken incorrectly if first, the Condition Code register
bits are set by a bitwise compare (that is, An - Am) and second, the Condition Code register
is modified by a MSREG write (that is,. bitset (ccr), (1<<6)). After the first and second
instructions have completed the CCR may not contain the intended sign and zero flag values
since the bitset instruction literally performs a read-modify-write operation on the CCR. The
read occurs before the result of the bitwise compare is stored in the CCR. After the CCR is
modified by the ALU operation, the final modify-write operation completes from the bitset
instruction and thus corrupts the state of the condition flags which are necessary for the
following conditional jump. Example 2-10 illustrates one scenario with both bad and good
coding styles.
DS795UM11 2-39
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.7.1 Code Example, Broken Code

Example 2-10

sample broken code

A0 - A1

bitset (ccr), (1<<6) # Supposedly we only want to

 # modify the limit bit but the

 # whole register must be read then

 # written back

if (condition) jmp success # this may or may not work

 # depending on the previous state

 # of the CCR and the result from

 # the bitwise compare.

 # Either way the real result in the

 # CCR was overwritten by the bitset.

 2.7.2 Code Example, Fixed Code

Example 2-11

sample fixed code

A0 - A1

nop # Added one NOP before a direct MSREG

 # modification

bitset (ccr), (1<<6)

if (condition) jmp success

 2.7.3 Successive but Orthagonal Operations that Affect the CCR

It is possible to have successive but orthagonal operations that affect the condition code
register. For example, performing an addition or subtraction operation with the "A"
accumulators affects the AS and A0 bits but not the BS or B0 bits and vice versa. The
following code illustrates this behavior:

##Starting state: The CCR = 0

uhalfword(a0)=(0)

uhalfword(a1)=(1)

a2=a0-a1 #only the AS and A0 bits are affected

uhalfword(b0)=(0)

uhalfword(b1)=(1)

b2=b0-b1 #only the BS and B0 bits are affected

if (b<0) jmp>do_something
2-40 DS795UM11
Copyright 2013 Cirrus Logic

32-Bit DSP Internal Architecture and Programming Model
32-bit DSP Assembly Programmer’s Guide

2

 2.7.4 If Statements and the CCR

If statements, such as "if (a<0)" and "if (b==0)" do not alter the contents of the CCR.
Therefore it is possible to have consecutive if statements, as shown in the following example:

uhalfword(a0)=(0)

uhalfword(a1)=(1)

a2=a0-a1

if (a < 0) jmp > process_channel_0 ### if statements do not alter the CCR.

if (a == 0) jmp > process_channel_1 ### so a second if statement can be placed
here

#process channel 2 ### and the "else" operations can begin here

..

..

ret

%process_channel_0:

..

..

ret

%process_channel_1:

..

..
DS795UM11 2-41
Copyright 2013 Cirrus Logic

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Chapter 3

3Full Word Instructions

 3.1 Assembly Language Syntax
The length of the DSP program word is 32-bits, and the assembler allows one 32-bit program
word per line. Some instructions use 32 bits of the program word (long word instructions) while
others use 16 bits of the program word (short word instructions). When there are two parallel data
moves in an instruction, each parallel move uses 8 bits of the 16-bit short word instruction. Any
parallel move(s) (16 bits) can be combined with any arithmetic or logic instruction (16 bits) to form
a complete 32-bit instruction word. See Figure 3-1. Only labels can occupy the first column of the
line; the instruction may be located anywhere else within the line.

 Figure 3-1. Assembler Example: 32-bit Instruction Word

Some arithmetic instructions allow dual accumulator destinations. For example, the instruction:

a3=a1+=x2*x2

translates to, “Square x2, add result of multiplication to a1, store final result in a1 and a3.” In this
case the previous value of a3 is irrelevant. The valid accumulator destination value pairs are:

Optional Label Full Word Instruction Optional Comment

— (32-bits) —
label: if (a!=0) jmp > # comment

Optional
Label

Arithmetic, Accumulator
or Logic Instruction

Optional Parallel Move
Optional

Comment

— (16-bits) (16-bits) —
label: a0+=x0*x2; b0+=x0*y2; x0,y0=xymem[i0];i0-=n # comment

Optional
Label

Arithmetic, Accumulator
or Logic Instruction

X Memory Data Move Y Memory Data Move
Optional

Comment

— (16-bits) (8 bits of parallel move) (8 bits of parallel move) —
label: b3=0; x3=xmem[i0]; ymem[i4]=b0;i4+=1 # comment

• 1 and 0 • 0 and 2
• 3 and 1 • 2 and 3
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-1

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.2 Conventions
The following conventions for the use of certain syntax terms used in this manual are explained
in Table 3-1.

Those parts of instructions that appear in the format:

a0 = x0*y0

are optional, which means that the instruction can take any of the following forms:

a0 = x0*y0

a0 += x0*y0

a0 -= x0*y0

 3.3 Execution Control Instructions

 3.3.1 do - Start Hardware Loop

Repeat a set of instructions count times, from the instruction following DO (first address) through
instruction at label (last address). Count is either a 10-bit immediate value or the 16-bit value in
an index register. A count of zero is not allowed. Valid values for the 10-bit immediate number are
1-1024, where 1024 is encoded in the instruction word as zero. Upon finishing the last instruction
of the last iteration of the loop, the PC is set to the first instruction following the last address of the
loop as specified in the DO instruction. This means that nested do-loops cannot share a last
address.

Assembler Syntax 1:

do (Index Register), label# i = 0 to 11

do (Index Register), >

where:

Index Register = i0, i1,...,i7

Examples:

#example using a label

 do (i0), label

label: nop

#example using a local symbol

 do (i2), >

%: nop

Table 3-1. Syntax Terms Used in this Manual

Terms Definitions

Accum Any Accumulator (a0-a3 or b0-b3)

Any Reg
Any Register (x0-x3, y0-y3, a0-a3, a0h-a3h, a0l-a3l, b0-b3, b0h-b3h, b0l-b3l, i0-i11, or nm0-
nm11)

DP Reg Any Data Path Register (x0-x3, y0-y3, a0-a3, or b0-b3)

MS Reg

ccr, dbc_cmd, dbc_d1, dbc_d2, dbc_io, dbc_status, iic_addr, iic_mask, jsr_data, jsr_mode,
jsr_ovf, jsr_unf, lp_data1, lp_data2, lst_data1, lst_data2, lst_mode, lst_ovf, lst_unf, mr,
mr_jsr_ptr, mr_lst_ptr, mr_r, mr_s, mr_sr, page_p, page_x, page_y, pc, pc_bp, rand, rand_a,
rand_b, rand_reset, rx_in, search_cnt, search_latch, stq_base
3-2 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Flags Affected:

None

Assembler Syntax 2:

do (10-bit count), label

do (10-bit count), >

Examples:

#example using a label

do 1024, label

label: nop

#example using a local symbol

do 1024, >

%: nop

Flags Affected:

None

 3.3.2 enddo - End Current Do-Loop

Pops the do-loop stack pointer.

Assembler Syntax:

enddo

Example:

enddo

Flags Affected:

None
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-3

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.3.3 do_patch - Jump to Patch

Jump to a set of instructions, then start at a first address and execute through a last address or
for a specific number of cycles. Upon finishing the last instruction, the PC is set to the first
instruction following the do_patch instruction. Nested do-loops or do-patches cannot share a last
address. The do_patch instruction allows a programmer to point to and run a piece of patch code
in another location in the code or in ROM.

There are two forms of the do_patch instruction.

• Form one uses a 10-bit immediate value, count, that specifies the number of instructions in
the patch. That is, the last address of the patch is calculated as:

(first address + count - 1) modulo 0x10000.

Valid values for count are 1-1024.

• Form two uses a 16-bit value in an index register to specify the last address of the patch.
Note that this is not an instruction count but an absolute address.

The do_patch instruction utilizes the same loop stack as the do instruction.

CAUTION: Do not execute an enddo instruction with a do_patch without also being within
a do-loop in the patch, as the resulting behavior is unpredictable.

Assembler Syntax 1:

do_patch label, (10-bit count)

Example 1:

start: nop

end: nop

 do_patch Start, (2)

Flags Affected:

None

Note: Valid values are 1-1024. 1024 is encoded as 0.

Assembler Syntax 2:

do_patch label, (Index Register)

where:

Index Register = i0, i1,...,i7

Example 2:

start: nop

end: nop

i0 = end

nop

 do_patch Start, (i0)
3-4 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Flags Affected:

None

 3.3.4 jmp - Jump

Jump to 16 bit immediate address or to the address specified in the index register. The index
register can be updated.

Assembler Syntax 1:

jmp label

Example 1:

jmp label

jmp <

Flags Affected:

None

Assembler Syntax 2:

jmp [;In <register update.]

Example 2:

jmp (i0)

jmp (i2); i2+=2

Flags Affected:

None

Restrictions:

Register Update:

no update

+1

-1

+n

+2

-2

-n

Note: Where n is the offset value in the Modulo-Offset register corresponding to the specified I
register (that is, i0 implies nm0).
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-5

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.3.5 if - Jump Conditionally

Jump conditionally to “label.” The PC will be updated with the address in “label” when the
condition is true.

See Section 5.2. It may be helpful to review the instructions contained in this section as they are
often used to set the condition required for jumping. The instructions that do not modify the
contents of the accumulators being compared can be particularly useful.

Assembler Syntax:

if (condition) jmp label

Example:

if (a==0) jmp label

if (!limit) jmp >

label:

nop

%:

nop

Flags Affected:

None

Restrictions:

a == 0

a != 0

a < 0

a >= 0

a <= 0

a > 0

z != 0

z == 0

b == 0

b != 0

b < 0

b >= 0

b <= 0

b > 0

limit (limit bit set in Modulo-Offset register)

!limit (limit bit not set in Modulo-Offset register)
3-6 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.3.6 call - Jump To Subroutine

Jump unconditionally to subroutine in 16 bit address label or the address in the index register.
The index register can be updated. Only the PC is saved on the stack.

Assembler Syntax 1:

call label

Example 1:

call label

call >

Flags Affected:

None

Assembler Syntax 2:

call (Index Register); index register update

where:

Index Register = i0, i1,...,i7

Example 2:

call (i7); i7-=2

Flags Affected:

None

Restrictions:

Register Update:

no update

+1

-1

+n

+2

-2

-n
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-7

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.3.7 callint - Answer Interrupt

Identical to the CALL instruction, except that interrupts are disabled. It can only be used with a
16-bit address – there is no index register mode. Uses the subroutine stack.

Assembler Syntax:

callint label

Example:

callint label

Flags Affected:

None

 3.3.8 callint_stq - Answer Stack Interrupt

Identical to the CALL instruction, except that standard interrupts and stack interrupts are
disabled. It can only be used with a 16-bit address – there is no index register mode. Uses the
subroutine stack.

Assembler Syntax:

callint_stq label

Example:

callint_stq label

Flags Affected:

None

 3.3.9 ret - Return From Subroutine

Return from subroutine.

Pops the return address from subroutine stack and assigns it to the PC.

Assembler Syntax:

ret

Example:

retFlags Affected:

None
3-8 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.3.10 retint - Return From Interrupt

Return from interrupt.

Pops the return address from subroutine stack, assigns it to the PC, and enables interrupts.

Assembler Syntax:

retint

Example:

retint

Flags Affected:

None

 3.3.11 retint_stq - Return From Stack Interrupt

Return from stack interrupt.

Pops the return address from subroutine stack, assigns it to the PC, enables interrupts, and
enables stack interrupts.

Assembler Syntax:

retint_stq

Example:

retint_stq

Flags Affected:

None

 3.3.12 inten - Enable Interrupts

Enables interrupts.

Assembler Syntax:

inten

Example:

inten

Flags Affected:

None
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-9

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.3.13 intdis - Disable Interrupts

Disables interrupts.

Assembler Syntax:

intdis

Example:

intdis

Flags Affected:

None

 3.3.14 halt - Stop Further Execution

Stop execution and enter low-power wait state.

Assembler Syntax:

halt

Example:

halt

Flags Affected:

None

 3.3.15 nop - No Operation

Perform no operation.

Assembler Syntax:

nop

Example:

nop

Flags Affected:

None
3-10 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.3.16 _breakpt - Breakpoint Instruction

Stop execution and enter low-power wait state.

Assembler Syntax:

_breakpt

Example:

_breakpt

Flags Affected:

None
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.4 64-bit Peripheral Moves

 3.4.1 XY Register Pair = ext(16-bit Address)

64-bit data transfer from peripheral space to an XY register pair.

Assembler Syntax:

XnYn Register Pair = ext(16-bit Address)

where:

x=0,1,...,3, y=0,1,...,3

Example:

x0,y0 = ext(0x0010)

Flags Affected:

None

 3.4.2 Accum = ext(16-bit Address)

64-bit, sign-extended data transfer from peripheral space to an accumulator.

Assembler Syntax:

Accum = ext(16-bit Address)

where:

Accum = a0,a1,...a3, b0,b1,...ba3

Example:

a0 = ext(0x1234)

Flags Affected:

None

Restrictions:

Register:

x0,y0- x3,y3

a0 - a3

b0 - b3
3-12 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.4.3 ext(16-bit Address) = XY Register Pair

64-bit data transfer from an XY register pair to peripheral space.

Assembler Syntax:

ext(16-bit Address) = XY Register Pair

Example:

ext(0x0010) = x1,y1

Flags Affected:

None.

 3.4.4 ext(16-bit Address) = Accum

64-bit data transfer from an accumulator to peripheral space. Data from an accumulator does
pass through the SRS unit and is affected accordingly.

Assembler Syntax:

ext(16-bit Address) = Accum

Example:

ext(0x0010) = x1,y1

ext(0x1234) = b3

Flags Affected:

L limit

T1, T0 Shift bits

Note: After the L, T1, and T0 flags are set, they must be cleared manually by the user. T0 and T1 will
only have values of 10b, 01b, or 00b.

Restrictions:

Register:

x0,y0- x3,y3

a0 - a3

b0 - b3
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-13

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.4.5 logexp = XY Register Pair

Perform primitive operations that may be used to approximate divide, power, and square root
functions. Data can be sourced from the XY registers or from the X or Y input mux. Operations
are pipelined in two clock cycles so data can not be read until after one cycle. Since the operation
is pipelined, a second operation can be started before the first one completes.

Assembler Syntax:

logexp X=Cmd_X(Mux_X(Xn)) Y=Cmd_Y(Mux_Y(Yn))

logexp X=Cmd_X(Mux_X(Xn)) Y=Cmd_Y(X-Y)

logexp X=Cmd_X(Mux_X(Xn)) Y=Cmd_Y(X>>1)

logexp X=Cmd_X(Mux_X(Xn)) Y=Cmd_Y(Xn)

logexp X=Cmd_X(X-Y) Y=Cmd_Y(Mux_Y(Yn))

logexp X=Cmd_X(X-Y) Y=Cmd_Y(X-Y)

logexp X=Cmd_X(X-Y) Y=Cmd_Y(X>>1)

logexp X=Cmd_X(X-Y) Y=Cmd_Y(Xn)

logexp X=Cmd_X(X>>1) Y=Cmd_Y(Mux_Y(Yn))

logexp X=Cmd_X(X>>1) Y=Cmd_Y(X-Y)

logexp X=Cmd_X(X>>1) Y=Cmd_Y(X>>1)

logexp X=Cmd_X(X>>1) Y=Cmd_Y(Xn)

logexp X=Cmd_X(Xn) Y=Cmd_Y(Mux_Y(Yn))

logexp X=Cmd_X(Xn) Y=Cmd_Y(X-Y)

logexp X=Cmd_X(Xn) Y=Cmd_Y(X>>1)

logexp X=Cmd_X(Xn) Y=Cmd_X(Xn)

Example:

logexp X=log(norm64(x0)) Y=log(norm32(y0))

logexp X=exp(X-Y) Y=sm(X-Y)

nop # pipeline delay before reading

x0,y0 = logexp

Flags Affected:

None

Normalization:

X is normalized to 16 bit float point data in the following format:

2 sign bit + 1bit 0 + 6 bit exponent + 7 bit significand

Bit[15] = S

Bit[14] = S & norm64

Bit[13] = 0

Bit[12] is 1 if a 64-bit normalization is performed. Otherwise, it is 0.

The data represented by above format is: 0.[1,significant]*2^exponent

Example 1:

uhalfword(x0) = (0x1000) # x0 = 0x00001000

15 14 13 12 7 6 0
3-14 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
uhalfword(y0) = (0x100) # y0 = 0x00000100

logexpX = nop(norm32(x0)) Y = nop(norm32(y0))

nop

x1, y1 = logexp

x1 will have a value of 0x06800000 and y1 will have a value of 0x04800000.

The least significant 16-bits can be ignored. Expanding the most significant 16-bits in
binary:

Note: As is typical in floating point representation, after normalization, the first bit of a non-zero input
is always 1, and hence, is not stored. The significant after normalization in the above example
would be 0x8000–since the most significant 1 is implicit, it is not stored and hence bits 0–6 in
the output are 0.

Example 2:

uhalfword(x0) = (0x1000) # x0 = 0x00001000

uhalfword(y0) = (0xfe0) # y0 = 0x00000FE0

logexp X = nop(norm64(x0)) Y = nop(norm32(y0))

nop

x1, y1 = logexp

Norm64 operates on a 64-bit number where the most significant 32-bits come from the
input register, and the least significant 32-bits are implicitly assumed as 0.

Log Operation

It takes normalized float point format data N as input. It calculates log2(2*N). The result is
a 9.23 number with the least significant 16-bits always being 0 (the meaningful accuracy
is 9.7).

Example 1:

uhalfword(x0) = (0x1000) # x0 = 0x00001000 = 4096 in decimal

uhalfword(y0) = (0x1234) # y0 = 0x00001234 = 4660 in decimal

logexp X = log(norm32(x0)) Y = log(norm32(y0))

nop

x1, y1 = logexp

x1 will have a value of 0x06800000 and y1 will have a value of 0x06970000. Since the
output is in 9.23 format, the decimal value of x1 and y1 are 13 and 13.1796875, which
matches the expected output of log2(2*4096) and log2(2*4660).

Exp Operation

It takes a 9.7 log number L as input (where the 9.7 number is in the most significant 16-
bits and the least significant 16 bits are ignored), and uses L's fractional part to compute
(2^(0.fractional))/2. The range of the fractional part is between 0 and 127/128 (since the

Bit Register X1 Register Y1

15 (Sign) 0 0

14 (Sign & norm64) 0 0

7–12 001101 (13) 001001 (9)

0–6 0000000 0000000
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-15

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
fractional part has 7 bits), and the output range will be between [(2^0)/2 = 0.5,
(2^(127/128))/2 = 0.9921]. The output will be in 1.31 format with the least significant 23
bits always 0 (the meaningful accuracy is 1.8).

The result is:

15 14 13 ... 7 6 ... 0

0. 2^(L[6,0])/2 7-bit 0

Bit 14 will always be 1 since the lowest output will be (2^0)/2 = 0.5.

If the 9.7 log number > 31.0, it’s over flow condition, and the result will be 0x7fff.

Note: Negative inputs will be interpreted as positive values and produce overflow.

Example 1:

fixed16(x0) = (0x06c0) # x0 = 0x06c00000 = 13.5 in 9.23 format

logexp X = exp(x0) Y = nop(x0)

nop

x1, y1 = logexp

x1 will have a value of 0x5a800000 which corresponds to 0.707 in 1.31 format. This
matches (2^(0.5))/2 = 1.414/2 = 0.707.

Shift-multiply Operation

It takes a 9.7 log number L as input (where the 9.7 number is in the most significant 16-
bits and the least significant 16 bits are ignored) and uses L's integer part to compute (-
2^(integer_part)). The final output is a 16-bit number with the output present in the most
significant 16-bits and the least significant 16-bits being set to zero. The shift-factor would
be saturated if the integer part is greater than 32 and is set to 0 if the integer part is less
than 16; that is, the output will be in the range [-2^16 to -2^32].

The result of SM is:

if(L[12]) // overflow, data > 2^32

 SM = 0x8000;

else if(L[11]==0) // underflow, data < 2^16

 SM = 0x0000;

else

 SM = -1<<L[[10:7];

if(L[15]) // data is a negative number, negate result

 SM = ~SM;

Example 1:

fixed16(x0) = (0x0ec0) # x0 = 0x0ec00000 = 29.5 in 9.23 format

logexp X = exp(x0) Y = sm(x0)

nop

x1, y1 = logexp

y1 will have a value of 0xe0000000 which corresponds to –(2^29).

Data Output

When outputting the 16 bit result from logexp block, it is concatenated with 16 bit 0 at the
3-16 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
end to form a 32 bit number: {16 bit data, 16-bit 0}

Sample Usage

Here are some basic functions:

compute log2(x0) using HW assist

y0 = (0x0000)

logexp X=log(norm32(x0)) Y=nop(norm64(y0)) # X = log2(x0); Y =

 # nop(norm64)0x0000)) ==

 # 0x10000000 == 32 in 9.23

logexp X=nop(X-Y) Y=nop(x0) # subtract/compensate for bias

 # of 32 (Y ignored hereafter)

nop

x0,y0 = logexp # x0 = log2(x0) in 9.23 format

 #(y0 == MS 16 bits of x0)

convert from 20*log10 to linear

a0 = 2^(x0*log2(10)/20)

x0 (input) in 8.24 format

 .ydata

I_VY_log10_to_log2 .dw .f2b(.log2(10)/(20*2))

 .code

I_S_20log10_to_Linear

convert from 20*log10 to log2

and move from 8.24 to 9.23 (extra shift in log10_to_log2 constant)

 a0 = (0x1000) # bias == 32

 y0 = ymem[[I_VY_log10_to_log2]

 a0 += x0*y0

 x0 = a0

convert back to linear (2^x)

 logexp X=exp(x0) Y=sm(x0)

 nop

 x0,y0 = logexp

 a0 = -x0*y0

b0 = sqrt(x0)

 logexp X=log(norm64(x0)) Y=nop(x0)

 logexp X=exp(X>>1) Y=sm(X>>1)

 nop

 x1,y1 = logexp

 b0 = -x1*y1

 # Note, it appears that output is Q5.26 format

cheap divide (a0 = x0/y0)

 logexp X=log(norm64(x0)) Y=log(norm32(y0))

 logexp X=exp(X-Y) Y=sm(X-Y)

 nop

 x0,y0 = logexp

 a0 = -x0*y0

normalize x2
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-17

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 x1 = x2

compute log2 using HW assist

 logexp X=log(norm32(x1)) Y=nop(x1) # X = log2(x1)

 #Y = x1 = b

 uhalfword(y0) = (0x0100) # used to shift 9.23 down to 32.0

 x1,y1 = logexp

 bitclr hi(x1), (0x807f) # clear sign bit and truncate any fractions

 b1 = x1*y0 # shift down

 uhalfword(b0) = (0x001f) # remove bias

 b0 = b0-b1; b1 = x2 # b1 = b

 AnyReg(i7, b0h) # i7 = shifts

 if (b==0) jmp >noshift

 do (i7), >

%: b1 = b1 << 1 # b1 = b'

%noshift

Restrictions:

Register:

x0, y0

x1, y1

x2, y2

x3, y3

Cmd_X[1:0]:

nop

sm

log

exp

Cmd_Y[1:0]:

nop

sm

log

exp

Mux_X[2:0]:

norm32 (x reg)

norm64 (x reg)

x-y

x>>1

(x reg)

Mux_Y[2:0]:

norm32 (y reg)

norm64 (y reg)

x-y

x>>1

(x reg)
3-18 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.4.6 XY Register Pair = logexp

Transfer 64-bit value into the XY register pair from the LogExp peripheral.

Assembler Syntax:

DP Pair = logexp

Flags Affected:

None

Restrictions:

Register:

x0, y0

x1, y1

x2, y2

x3, y3

 3.5 Memory Moves - Direct
Note: During Direct Memory Moves, if the size of the destination is less than 32 bits, the excess

upper bits of the source are ignored. If the size of the source is less than 32 bits, the excess
upper destination bits are zero-filled, except for when reading guard registers (for example,
a0g, b3g) that are sign extended.

 3.5.1 Any Reg = xmem[16-bit Address]

Data transfer from X memory to any register. Direct addressing (16-bit) is used.

Assembler Syntax:

Any Reg = xmem[16-bit Address]

Example:

a0 = xmem[0x9980]

Flags Affected:

None
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-19

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.2 xmem[16-bit Address] = Any Reg

Data transfer from any register to X memory. Direct addressing (16-bit) is used.

Assembler Syntax:

xmem[16-bit Address] = Any Reg

Example:

xmem[0x0870] = b3

Flags Affected:

L limit

T1, T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 only have values of 10b, 01b, or 00b.
3-20 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.3 Any Reg = ymem[16-bit Address]

Data transfer from Y memory to any register. Direct addressing (16-bit) is used.

Assembler Syntax:

Any Reg = ymem[16-bit Address]

Example:

a0 = ymem[0x9980]

Flags Affected:

None
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-21

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.4 ymem[16-bit Address] = Any Reg

Data transfer from any register to Y memory. Direct addressing (16-bit) is used.

Assembler Syntax:

ymem[16-bit Address] = Any Reg

Example:

ymem[0x0870] = b3

Flags Affected:

L limit

T1, T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 will only have values of 10b, 01b, or 00b.:
3-22 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.5 Any Reg = pmem[16-bit Address]

Data transfer from program memory to any register. Direct addressing (16-bit) is used.

Assembler Syntax:

Any Reg = pmem[16-bit Address]

Example:

a0 = pmem[0x9980]

Flags Affected:

None
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-23

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.6 pmem[16-bit Address] = Any Reg

Data transfer from any register to program memory. Direct addressing (16-bit) is used.

Assembler Syntax:

pmem[16-bit Address] = Any Reg

Example:

pmem[0x0870] = b3

Flags Affected:

L limit

T1, T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 will only have values of 10b, 01b, or 00b
3-24 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.7 Any Reg = inp[16-bit Address]

Data transfer from peripheral space to any register. Direct addressing (16-bit) is used.

Assembler Syntax:

Any Reg = inp[16-bit Address]

Example:

a0 = inp[0x9980]

Flags Affected:

None.
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-25

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.8 outp[16-bit Address] = Any Reg

Data transfer from any register to peripheral space. Direct addressing (16-bit) is used.

Assembler Syntax:

outp[16-bit Address] = Any Reg

Example:

outp[0x0870] = b3

Flags Affected:

L limit

T1, T0 Shift bits

If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they must be
cleared manually by the user. T0 and T1 will only have values of 10b, 01b, or 00b.
3-26 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.9 Any Reg = xmem[Index Register]

Data transfer from X memory to any register. Indexed addressing is used.

Assembler Syntax:

Any Reg = xmem[Index Register]

Example:

a0 = xmem[i7]

Flags Affected:

None
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-27

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Register Update:

no update

+1

-1

+n

+2

-2

-n

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.10 xmem[Index Register] = Any Reg

Data transfer from any register to X memory. Indexed addressing is used.

Assembler Syntax:

xmem[Index Register] = Any Reg

Example:

xmem[i9] = b3

Flags Affected:

L limit

T1, T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 only have values of 10b, 01b, or 00b.
3-28 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Register Update:

no update

+1

-1

+n

+2

-2

-n

Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.11 Any Reg = ymem[Index Register]

Data transfer from Y memory to any register. Indexed addressing is used.

Assembler Syntax:

Any Reg = ymem[Index Register]

Example:

x0 = ymem[i0]

Flags Affected:

None.
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-29

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Register Update:

no update

+1

-1

+n

+2

-2

-n

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.12 ymem[Index Register] = Any Reg

Data transfer from any register to Y memory. Indexed addressing is used.

Assembler Syntax:

ymem[Index Register] = Any Reg

Example:

ymem[i7] = i3

Flags Affected:

L limit

T1, T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 only have values of 10b, 01b, or 00b.
3-30 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Register Update:

no update

+1

-1

+n

+2

-2

-n

Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.13 Any Reg = pmem[Index Register]

Data transfer from program memory to any register. Indexed addressing is used.

Assembler Syntax:

Any Reg = pmem[Index Register]

Example:

x0 = pmem[i0]

Flags Affected:

None
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-31

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Register Update:

no update

+1

-1

+n

+2

-2

-n

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.14 pmem[Index Register] = Any Reg

Data transfer from any register to program memory. Indexed addressing is used.

Assembler Syntax:

pmem[Index Register] = Any Reg

Example:

pmem[i7] = i3

Flags Affected:

L limit

T1, T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 only have values of 10b, 01b, or 00b.
3-32 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Register Update:

no update

+1

-1

+n

+2

-2

-n

Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.15 outp[Index Register] = Any Reg

Data transfer from peripheral space to any register. Indexed addressing is used.

Assembler Syntax:

outp[Index Register] = Any Reg

Example:

outp[i7] = i3

Flags Affected:

L limit

T1, T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 only have values of 10b, 01b, or 00b.
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-33

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Register Update:

no update

+1

-1

+n

+2

-2

-n

Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.5.16 Any Reg = inp[Index Register]

Data transfer from peripheral space to any register. Indexed addressing is used.

Assembler Syntax:

Any Reg = inp[Index Register]

Example:

x0 = inp[i0]

Flags Affected:

None.
3-34 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Register Update

no update

+1

-1

+n

+2

-2

-n

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-35

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.6 Immediate Register Moves
There are five types of immediate register loads designed to cover the useful cases of moving
16-bit immediate data into an 8-bit (guard,) 16-bit (index or nm), 32-bit (data) or 72-bit
(accumulator) register. The type of move is designated by a prefix on the destination register.

Table 3-2 describes how the five modes work with 72-bit accumulators and Table 3-3 describes
the 32-bit registers:

Table 3-2 Legend

• zero - all bits zero

• sign extend - sign extended from 16-bit immediate value

• no change - no bits affected

• 16-bit data - bits set to 16-bit immediate value.

The ‘fixed16’ move is the default prefix for accumulators and 32-bit registers. If no prefix is
specified for these registers, ‘fixed16’ is used.

For 8-bit guard registers, 16-bit index registers, and 16-bit nm registers, no prefix should be
specified. If the destination register is a guard register, the least significant 8 bits of the 16-bit
immediate data value are loaded.

Table 3-2. 72-bit Accumulators

a0

a0g a0h a0l

Instruction 71 64 63 48 47 32 31 16 15 0
fixed16(a0) sign extend 16-bit data zero zero zero
fixed16(a0h) no change 16-bit data zero no change no change
fixed16(a0l) no change no change no change 16-bit data zero
ufixed16(a0) zero 16-bit data zero zero zero
ufixed16(a0h) no change 16-bit data zero no change no change
ufixed16(a0l) no change no change no change 16-bit data zero
halfword(a0) sign extend sign extend 16-bit data zero zero
halfword(a0h) no change sign extend 16-bit data no change no change
halfword(a0l) no change no change no change sign extend 16-bit data
uhalfword(a0) zero zero 16-bit data zero zero
uhalfword(a0h) no change zero 16-bit data no change no change
uhalfword(a0l) no change no change no change zero 16-bit data

lo16(a0) no change no change 16-bit data no change no change
lo16(a0h) no change no change 16-bit data no change no change
lo16(a0l) no change no change no change no change 16-bit data

Table 3-3. 32-bit Data Registers

x0

Instruction 31 16 15 0
fixed16(x0) 16-bit data zero
ufixed16(x0) 16-bit data zero
halfword(x0) sign extend 16-bit data
uhalfword(x0) zero 16-bit data

lo16(x0) no change 16-bit data
3-36 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.6.1 fixed16(Destination) = (16-bit Data)

Load 16-bit data into a register as a fixed point fractional value. The “fixed16” prefix is optional. If
the destination is a 32-bit data register, data is loaded into the most significant 16 bits, and the
least significant 16 bits are cleared. If the destination is an accumulator, the data is placed in the
most significant 16 bits and the least significant 16 bits are cleared of the high segment (i.e. a0h),
the low segment (i.e. a0l) is cleared, and the data is sign extended into the guard segment (i.e.
a0g.)

Assembler Syntax:

fixed16(Destination) = (16-bit Data)

Destination = (16-bit Data)

Example:

fixed16(x0) = (0x1234)

x0 = (0x1234)

Flags Affected:

None

Restrictions:

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

MS Reg - See Table 2-25.

 3.6.2 ufixed16(Destination) = (16-bit Data)

Load 16-bit data into a register as an unsigned fixed point fractional value. If the destination is a
32-bit data register, data is loaded into the most significant 16 bits, and the least significant 16
bits are cleared. If the destination is an accumulator, the data is placed in the most significant 16
bits and the least significant 16 bits are cleared of the high segment (that is, a0h), the low
segment (that is, a0l) and the guard segment (that is, a0g.) are cleared.

Assembler Syntax:

ufixed16(Destination) = (16-bit Data)

Example:

ufixed16(x0) = (0x1234)
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-37

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Flags Affected:

None

Restrictions:

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

MS Reg - See Table 2-25.

 3.6.3 uhalfword(Destination) = (16-bit Data)

Load 16-bit data into a register as an unsigned integer. If the destination is a 32-bit data register,
data is loaded into the least significant 16 bits, and the most significant 16 bits are cleared. If the
destination is an Accumulator, the data is placed in the least significant 16 bits and the most
significant 16 bits are cleared of the high segment (i.e. a0h), the low segment (i.e. a0l) is cleared,
and the data is sign extended into the guard segment (i.e. a0g.)

Assembler Syntax:

uhalfword(Destination) = (16-bit Data)

Example:

uhalfword(a0) = (0x1234)

Flags Affected:

None.

Restrictions:

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

MS Reg - See Table 2-25.
3-38 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.6.4 Index Register = (16-bit Data)

Load 16-bit data into an index register as an unsigned integer. Data is loaded into the least
significant 16 bits, and the most significant 16 bits are cleared.

Assembler Syntax:

Index Register = (16-bit Data)

Example:

i3 = (0xface)

Flags Affected:

None.

Restrictions:

Destination:

i0 - i11

 3.6.5 NM Register = (16-bit Data)

Load 16-bit data into a register as an unsigned integer.

Assembler Syntax:

NM Register = (16-bit Data)

Example:

nm8 = (0xface)

Flags Affected:

None.

Restrictions:

Destination:

nm0 - nm11

 3.6.6 Guard Register = (8-bit Data)

Load 16-bit data into a register as an unsigned integer. If the destination is a 32-bit data register,
data is loaded into the least significant 16 bits, and the most significant 16 bits are cleared. If the
destination is an Accumulator, the data is placed in the least significant 16 bits and the most
significant 16 bits are cleared of the high segment (i.e. a0h), the low segment (i.e. a0l) is cleared,
and the data is sign extended into the guard segment (i.e. a0g.) Since this is the only instruction
for loading the Guard, Index, and NM registers directly, the prefix is optional for those
destinations.
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-39

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Assembler Syntax:

Guard Register = (8-bit Data)

Example:

b2g = (0xfe)

Flags Affected:

None

.Restrictions:

Destination:

a0g - a3g

b0g - b3g

 3.6.7 halfword(Destination) = (16-bit Data)

Load 16-bit data into a register as a signed integer. If the destination is a 32-bit data register, data
is loaded into the least significant 16 bits, and the and the data is sign extended into the most
significant 16 bits. If the destination is an accumulator, the data is placed in the least significant
16 bits and sign extended into the most significant 16 bits of the high segment (i.e. a0h), the low
segment (i.e. a0l) is cleared, and the data is sign extended into the guard segment (i.e. a0g.)

Assembler Syntax:

halfword(Destination) = (16-bit Data)

Example:

halfword(a0) = (0x1234)

halfword(dbc_d1) = (0xffff)

Flags Affected:

None.

Restrictions:

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

MS Reg - See Table 2-25.
3-40 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.6.8 lo16(Destination) = (16-bit Data)

Load 16-bit data into the least significant 16 bits of a register. No other bits in the register are
affected. If a full accumulator (i.e. a0) is specified, the operation is performed on just the high part
of the accumulator (i.e. a0h).

Assembler Syntax:

lo16(Destination) = (16-bit Data)

Example:

lo16(x0) = (0x1234)

lo16(dbc_d1) = (0xabcd)

Flags Affected:

None

Restrictions:

Destination

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

MS Reg - See Table 2-25.

 3.6.9 MS Reg = (16-bit Data)

Load 16-bit data into a MS register as a signed integer. If the destination is a 32-bit MS register,
data is loaded into the least significant 16 bits, and the and the data is sign extended into the
most significant 16 bits.

Assembler Syntax:

MS Reg = (16-bit Data)

Example:

dbc_d1 = (0x1234)

jsr_data = (0xabcd)

Flags Affected:

None
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-41

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Destination

MS Reg - See Table 2-25.

 3.6.10 AnyReg(Any Reg, Any Reg)

Transfer data from any register to any register.

Restrictions:

None.

Assembler Syntax:

AnyReg(Destination, Source)

Example:

AnyReg(nm4, b0h)

Flags Affected:

L limit

T1, T0 Shift bits

If the source is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they must
be cleared manually by the user. T0 and T1 will only have values of 10b, 01b, or 00b.
3-42 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Destination/Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.6.11 Any Reg = MS Reg

Transfer data from a Master State Register to any register.

Assembler Syntax:

Any Reg = MS Reg

Example:

b0l = jsr_mode

a0l = search_latch
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-43

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Destination/Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25

 3.6.12 MS Reg = Any Reg

Transfer data from any register to a Master State Register.

Assembler Syntax:

MS Reg = Any Reg

Example:

jsr_mode = b0l

search_latch = a0l

Flags Affected:

L Only flags affected are:

L limit

T1, T0 Shift bits

Note: If Any Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set,
they must be cleared manually by the user. T0 and T1 will only have values of 10b, 01b, or 00b
3-44 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Destination/Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.6.13 AnyReg (Any Reg, Any Reg), (Any Reg, Any Reg)

Performs dual data transfers from any register to any register. There are some limitations in
source and destination due to the current implementation of the Cirrus Logic DSP 32-bit
architecture.

Restrictions:

The restrictions for AnyReg transfers include the following:

• The first pair of registers is processed first, and the second pair of registers is processed
second.

• Both sources cannot be Index registers

• Both sources cannot be NM registers

• If both destinations are Index registers, destination 1 must be i0-i3 or i8-i11, and
destination 2 must be i4-i7.

• If both destinations are NM registers, destination 1 must be nm0-nm3 or nm8-nm11, and
destination 2 must be nm4-nm7.

• Dual accumulator destination indices must be equal.

• “B” accumulator must be in second pair of arguments

• “A” accumulator must be in first pair of arguments

Assembler Syntax:

AnyReg(Destination1, Source1),(Destination2, Source2)
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-45

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Example:

AnyReg(i0,nm5),(nm5,b0)

AnyReg(i0,nm4),(i7,x0)

AnyReg(x0,nm4),(i2,i8)

AnyReg(i0,i11),(i4,b0h)

Flags Affected:

L limit

T1, T0 Shift bits

Note: If Source 1 or Source 2 is an accumulator, then the L, T1, and T0 are affected. After these
flags are set, they must be cleared manually by the user. T0 and T1 only have values of 10b,
01b, or 00b.

Restrictions:

Destination1/Source1,

Destination2/Source2:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - a3h

b0h - b3h

a0g - a3g

b0g - b3g

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

 3.6.14 Accum = long(Accum)

Transfers 64 bits of the source through the SRS unit to the destination. This instruction differs
from the move instruction “Accum = Accum” in that it transfers 64 bits instead of 32, and it differs
from the math instruction “Accum =+ Accum” in that it transfers 64 bits instead of 72, and it goes
through the SRS unit, performing any necessary shifting or saturating.

Assembler Syntax:

Accum = long(Accum)

Example:

a0 = long(b2)
3-46 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Flags Affected:

L limit

T1, T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 will only have values of 10b, 01b, or 00b.

Note: The Source and Destination are both encoded twice in this instruction.

Restrictions:

Destination:

Source

a0 - a3

b0 - b3

 3.6.15 In = Im/(0) ± (16-bit Data)

Add 16-bit immediate data to an optional source index register and place result in destination
index register.

If an optional source Index register is used, addition is governed by the current state of the NM
register associated with the source Index register (Im).

Important Note: When the In = (0) ± (16-bit Data) form of this instruction is used, addition mode is
governed by the current state of the NM0 register, regardless of the value of n.

This instruction uses the AGU and hence does not require a subsequent dead-cycle before the
index register is used. For example, the following code is valid:

i0 = (0) + (0x1234)

x0 = xmem[i0]

Assembler Syntax:

In = Im + (16-bit Data)

In = Im - (16-bit Data)

In = (0) + (16-bit Data)

In = (0) - (16-bit Data)

Example:

i0 = i4 + (0x1234)

i4 = i4 - (0x1234)

Flags Affected:

None
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-47

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Destination:

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

Source:

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

Instruction:

In = Im + (16-bit)

In = Im - (16-bit)

In = (0) + (16-bit)

In = (0) - (16-bit)

 3.7 Bit Manipulation Instructions

 3.7.1 Bit Test

Test the bits of the register specified by the immediate mask value. If all bits of the masked 16-bit
result are ones, then the z bit in the CCR is set to one. Otherwise, the z bit is set to zero. The
pseudo-code for this operation is:

if ((reg AND mask) XOR mask) == 0x0000

z = 1

else

z = 0

Either the least significant or most significant 16 bits of the register can be used, as selected by
the “lo” or “hi” prefix. The register is unaffected after execution of this instruction. Not allowed on
accumulators.
3-48 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Assembler Syntax:

BitTst lo(32-bit Reg),(16-bit Mask)

BitTst hi(32-bit Reg),(16-bit Mask)

BitTst (16-bit Reg),(16-bit Mask)

Example:

BitTst lo(x0),0x0400

BitTst hi(imask),0x0002

BitTst (i4),0xaaaa

Flags Affected:

Z zero

Restrictions:

Destination:

x0 - x3

y0 - y3

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.7.2 Bit Set

Perform a bitwise test as in BitTst, then perform a bitwise OR on 16 bits of the specified register
with the immediate mask value and place the result back into the register. Either the least
significant or most significant 16 bits of the register can be used, as selected by the “lo” or “hi”
prefix. Not allowed on accumulators.

Assembler Syntax:

BitSet lo(32-bit Reg),(16-bit Mask)

BitSet hi(32-bit Reg),(16-bit Mask)

BitSet (16-bit Reg),(16-bit Mask)

Example:

BitSet lo(y2),0x0402

BitSet hi(x3),0x0001

BitSet (i1),0x0002

Flags Affected:

Z zero
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-49

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
Restrictions:

Destination:

x0 - x3

y0 - y3

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.

 3.7.3 Bit Clear

Perform a bitwise test as in BitTst, then perform a bitwise AND on 16 bits of the specified register
with the bitwise NOT of the immediate mask value and place the result back into the register.
Either the least significant or most significant 16 bits of the register can be used, as selected by
the “lo” or “hi” prefix. Not allowed on accumulators.

Assembler Syntax:

BitClr lo(32-bit Reg),(16-bit Mask)

BitClr hi(32-bit Reg),(16-bit Mask)

BitClr (16-bit Reg),(16-bit Mask)

Example:

BitClr lo(x2),0x0100

BitClr hi(y2),0x8002

BitClr (nm7),0x0400

Flags Affected:

Z zero

Restrictions:

Destination

x0 - x3

y0 - y3

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.
3-50 Copyright 2013 Cirrus Logic, Inc. DS795UM11

Full Word Instructions
32-bit DSP Assembly Programmer’s Guide
 3.7.4 Bit Change

Perform a bitwise test as in BitTst, then perform a bitwise XOR on 16 bits of the specified register
with the immediate mask value and place the result back into the register. Either the least
significant or most significant 16 bits of the register can be used, as selected by the “lo” or “hi”
prefix. Not allowed on accumulators.

Assembler Syntax:

BitChg lo(32-bit Reg),(16-bit Mask)

BitChg hi(32-bit Reg),(16-bit Mask)

BitChg (16-bit Reg),(16-bit Mask)

Example:

BitChg lo(x0),0xffff

BitChg hi(y3),0x0180

BitChg (i0),0x5000

Flags Affected:

Z zero

Restrictions:

Destination:

x0 - x3

y0 - y3

i8 - i11

nm8 - nm11

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

MS Reg - See Table 2-25.
DS795UM11 Copyright 2013 Cirrus Logic, Inc 3-51

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Chapter 4

4Multifunction Moves

Multifunction instructions occupy the most significant 16 bits of the instruction word. In
general, they affect the shifting/limiting bits of the CCR.

 4.1 Single Multifunction Moves
Transfers data between a data path register and X or Y memory. Either indexed or direct
addressing (6 bit) can be used. Index registers can be updated. Data moves that can be done
by themselves or included with a corresponding arithmetic instruction. Performing two data
moves is considered a parallel move. There are restrictions for parallel moves, but any
multifunction move can be done in conjunction with an arithmetic instruction.

 4.1.1 DP Reg = xmem[Index Register]
DP Reg = xmem[6-bit Address]

Assembler Syntax:

DP Reg = xmem[Index Register]; Index Register;= update
DP Reg = xmem[6-bit Address]

Example:

x2 = xmem[i7]

b0 = xmem[0x38]

Flags Affected:

None
DS795UM11 4-1
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Restrictions:

Destination:

x0

x1

x2

x3

y0

y1

y2

y3

a0

a1

a2

a3

b0

b1

b2

b3

 4.1.2 xmem[Index Register] = DP Reg
xmem[6-bit address] = DP Reg

Assembler Syntax:

xmem[Index Register] = DP Reg;= update
xmem[6-bit Address] = DP Reg

Example:

xmem[i7] = x2

xmem[0x2f] = a2

Flags Affected:

L limit

T1,T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 only have values of 10b, 01b, or 00b
4-2 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Restrictions:

Source:

x0

x1

x2

x3

y0

y1

y2

y3

a0

a1

a2

a3

b0

b1

b2

b3

 4.1.3 DP Reg = ymem[Index Register]
DP Reg = ymem[6-bit address]

Assembler Syntax:

DP Reg = ymem[Index Register];= update
DP Reg = ymem[6-bit Address]

Example:

b2 = ymem[i7]

y3 = ymem[0x1f]

Flags Affected:

None.
DS795UM11 4-3
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Restrictions:

Destination:

x0

x1

x2

x3

y0

y1

y2

y3

a0

a1

a2

a3

b0

b1

b2

b3

 4.1.4 ymem[Index Register] = DP Reg
ymem[6-bit address] = DP Reg

Assembler Syntax:

ymem[Index Register] = DP Reg;= update
ymem[6-bit Address] = DP Reg

Example:

ymem[i7] = b3

ymem[0x30] = i3

Flags Affected:

L limit

T1,T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 only have values of 10b, 01b, or 00b.
4-4 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Restrictions:

Source:

x0

x1

x2

x3

y0

y1

y2

y3

a0

a1

a2

a3

b0

b1

b2

b3

 4.1.5 Data Path Register to or from Any Register

 4.1.5.1 DP Reg = Any Reg

Data transfer between any register and a data path register.

Assembler Syntax:

DP Reg = Any Reg

Example:

y0 = b3g

Flags Affected:

None.
DS795UM11 4-5
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Restrictions:

Destination:

x0

x1

x2

x3

y0

y1

y2

y3

a0

a1

a2

a3

b0

b1

b2

b3

Source:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

 4.1.5.2 Any Reg = DP Reg

There are two different instructions that can be used to load the high portion of an
accumulator with the contents of a data path register.

The first takes the form:

 b3 = x2

The second takes the form:

 b3 = +x2

In terms of effective functionality, the results of executing either of these two instructions are
identical—the contents of the destination accumulator is always the same, regardless of
which instruction is executed. Neither is affected by the SRS block, so no shifting, rounding or
4-6 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

saturation will take place. Nor is either subject to the built-in one bit left shift that normally
occurs with MAC multiply instructions (such as with b3 = x2 * y2). Both sign-extend into the
accumulator's guard register during the transfer.

The only difference is in the type of instruction that they are. In the form b3 = x2, you are
executing a 16-bit Multifunction Move operation. This is the instruction described in this
section.

In the form b3 = +x2, you are executing a 16-bit Multifunction Arithmetic MAC operation.
Specifically, this is the “Multiply by One with Optional Accumulate” instruction as seen in
Section 5.1.6 and Section 5.1.7.

The reason it is important to note that these are different instructions is because, as with any
pair of one Multifunction Move instruction and one Multifunction Arithmetic/Accumulator
instruction, the two can be packed into a single 32-bit instruction.

For example, if you would like to load four accumulators with four different values using a
single instruction, you may do so with the following code:

 a0 = +x2; b0 = +y2; a3 = x3; b3 = y3

A parallel multiply by one instruction as described in Section 5.1.7 allows two destination
registers per assignment, so this instruction could be extended to assign six registers in the
form:

 a1 = a0 = +x2; b1 = b0 = +y2; a3 = x3; b3 = y3

where a1 and a0 are both assigned the value in x2 and b1 and b0 are both assigned the
value in y2.

In general, when choosing between which form of the move instruction you will use in your
code, you should consider what else you would like to accomplish in addition to the move
with that cycle of CPU execution. If you want to perform another move, as shown in the
above example, or perhaps a move from memory into an accumulator, you must use the form
of move that utilizes the MAC:

 b3 = +x2; a0 = xmem[i0]

If you attempted the following code:

 b3 = x2; a0 = xmem[i0]

you would receive the following assembler error:

 "Instructions cannot fit into one word."

On the other hand, if you wanted to perform some other arithmetic operation with this
instruction, such as a bitwise OR (see Section 5.2.15), then you must use the form of move
that only operates on the data path:

 b3 = x2; a0 = a0 | b1

Again, if you attempted the following code:

 b3 = +x2; a0 = a0 | b1

you would receive the following assembler error:

 "Instructions cannot fit into one word."
DS795UM11 4-7
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Finally, one should be careful not to confuse the "=+" notation with the "+=" operator. The
instruction b3 =+ x2 and b3 += x2 accomplish two very different things.The latter is the
accumulation operator that can be translated into:

 b3 = b3 + x2

where the contents of x2 will be added to the high portion of b3 of stored back into b3.

Assembler Syntax:

Any Reg = DP Reg

Example:

b3 = x2

nm0 = a2

Flags Affected:

L limit

T1,T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 only have values of 10b, 01b, or 00b.
4-8 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Restrictions:

Destination:

x0 - x3

y0 - y3

a0 - a3

b0 - b3

a0l - a3l

b0l - b3l

a0h - b3h

b0h - b3h

a0g - a3g

b0g - b3g

i0 - i3

nm0 - nm3

i4 - i7

nm4 - nm7

Source:

x0

x1

x2

x3

y0

y1

y2

y3

a0

a1

a2

a3

b0

b1

b2

b3
DS795UM11 4-9
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

 4.2 Parallel Multifunction Move Instructions
Parallel multifunction moves allow one X memory move and one Y memory move in a single
instruction. Parallel multifunction moves are a subset of multifunction data moves.

Restrictions:

Perform data transfer from memory to a data register, or from an accumulator to memory.

• X memory can only be addressed using index registers i0 and i1

• Y memory can only be addressed using index registers i4 and i5.

• X memory moves can only be used with X data registers and A accumulators.

• Y memory moves can only be used with Y data registers and B accumulators.

• Accumulators (a0-a3, b0-b3) can only be a source

• Data registers (x0-x3, y0-y3) can only be a destination

Note: “Parallel Pairing: Right” and “Parallel Pairing Left,” which appear below Assembler Syntax
statements in this Section, refers to whether the defined register in a set of paired registers
is to the left or right of a comma. A register that is “Parallel Pairing: Left” must be to the left
of the comma, while “Parallel Pairing: Right” must be to the right of a comma when reading
an instruction from left to right.

 4.2.1 Xn = xmem[Index Register]

Assembler Syntax:

Xn = xmem[Index Register];= update

Parallel Pairing: Left (see Restrictions in Section 4.2)

Example:

x0 = xmem[i0]; i0+=n; y0 = ymem[i4]; i4+=n;

Flags Affected:

None
4-10 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Restrictions:

Register Update:

no update

+1

-1

+n

Destination

x0

x1

x2

x3

 4.2.2 xmem[Index Register] = An

Assembler Syntax:

xmem[Index Register] = An;= update

Parallel Pairing: Left (see Restrictions in Section 4.2)

Example:

xmem[i1] = a3; i1+=n; y3 = ymem[i4]

Flags Affected:

L limit

T1,T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected.After these flags are set, they
must be cleared manually by the user. T0 and T1 will only have values of 10b, 01b, or 00b.

Restrictions:

Register Update:

no update

+=1

-=1

+=n

Destination:

a0

a1

a2

a3
DS795UM11 4-11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

 4.2.3 Ym = ymem[Index Register]

Assembler Syntax:

Ym = ymem[Index Register];= update

Parallel Pairing: Right (see Restrictions in Section 4.2)

Example:

xmem[i1] = a3; i1+=n; y3 = ymem[i4]

Flags Affected:

None

Restrictions:

Register Update:

no update

+=1

-=1

+=n

Destination:

y0

y1

y2

y3

 4.2.4 ymem[Index Register] = Bm

Assembler Syntax:

ymem[Index Register] = Bm;= update

Parallel Pairing: Right (see Restrictions in Section 4.2)

Example:

Examples of parallel multifunction moves:

X memory moves are placed before Y memory moves in the syntax:

x0 = xmem[i0]; i0+=n; ymem[i4]=b0
4-12 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Other Examples:

;ymem[i4] = b0

When used in conjunction with an arithmetic (least significant 16 bits) instruction:

a0=x2*y0; x0=xmem[i0]; i0+=n; ymem[i4]=b0
xmem[i1]=a0; ymem[i4]=b3; i4+=1

x0=xmem[i0]; i0+=1; y0=ymem[i5]; i5+=n

x3=xmem[i0]; i0+=1; ymem[i5]=b2; i5-=1

Flags Affected:

L limit

T1,T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 will only have values of 10b, 01b, or 00b.

Restrictions:

Register Update:

no update

+1

-1

+n

Source

b0

b1

b2

b3

 4.3 Data Path Register to Data Path Register Instructions
Perform data transfer from a data register to a data register.

Restrictions:

• Accumulators (a0-a3, b0-b3) can only be a source

• Data registers (x0-x3, y0-y3) can only be a destination
DS795UM11 4-13
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

 4.3.1 DP Reg = DP Reg

Data path register to data path register data move. The only restriction is that the source and
destination must have the same index (0-3).

Assembler Syntax:

DP Reg = DP Reg

Example:

y0 = b3g

Flags Affected:

None

Restrictions:

Destination

x

y

a

b

Source

x

y

a

b

Note: See other Restrictions in Section 4.3.

 4.4 Parallel Register to/from Register Instructions
Perform data transfer from a data register to a data register, or from an accumulator to a data
register.

Restrictions:

• Accumulators (a0-a3, b0-b3) can only be a source

• Data registers (x0-x3, y0-y3) can only be a destination

Examples:

x0=y0; b3=a3

a2=b2; y0=a0
4-14 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

 4.4.1 Data Path Register to Data Path Register and
Data Path Register to/from X or Y Memory Restrictions

Perform a parallel multifunction move using a data register move and a memory move. One
instruction from each of the previous two groups can be combined into one parallel move.

• For this combination move, the sources cannot both be A or B accumulators. For
example:

ymem[i4]=b2; a0=b0 #Bad:Sources are b2 and b0 (both B accumulators)
ymem[i4]=b2; b2=a2 #Good:Sources are b2 and a2

The exception to this is when the source accumulators are from the same accumulator group.

For example, this is illegal:

x0=a0; xmem[i0]=a1

The following instruction is also illegal:

x0=a0; xmem[i0]=a0

But it is legal, when rewritten as:

x0=xmem[i0]=a0

The restrictions for this case are:

• An accumulator must be the source.

• The memory space and accumulator must “match.”

For example, this is illegal:

x0=ymem[i4]=a1

As it uses Y memory and an A accumulator. Switching to a B accumulator makes the
instruction legal, as follows:

x0=ymem[i4]=b1

• There is no restriction on the data register (x0-x3 or y0-y3) used.

• If both destinations are data registers (rather than one data register and one memory
location), one must be an X data register and the other a Y data register.

• If the accumulator source is an A accumulator, the accumulator index is encoded in the
most significant 8 bits of the opcode, and the accumulator index in the least significant 8
bits is ignored. Conversely, if the accumulator source is a B accumulator, the
accumulator index is encoded in the least significant 8 bits of the opcode, and the
accumulator index in the most significant 8 bits is ignored.
DS795UM11 4-15
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

 4.5 64-bit Multifunction Moves
A 64-bit multifunction move will move X and Y memory into a pair of registers.

Restrictions:

• The data register pair must share the same index.

 4.5.1 Data Path Register Pair to or from XY Memory

 4.5.1.1 Data Path Register Pair = xymem[Index Register]
Data Path Register Pair = xymem[6-bit Address]

Long data transfer between XY or AB registers and XY memory. Either indexed or direct
addressing (6 bit) can be used. Index registers can be updated.

Assembler Syntax:

Xn,Yn = xymem[Index Register];= update
Xn,Yn = xymem[6-bit Address]

An,Bn = xymem[Index Register]

An,Bn = xymem[6-bit Address]

Example:

x0,y0 = xymem[i0]

x1,y1 = xymem[0x23]

a0,b0 = xymem[i7]

a3,b3 = xymem[0x03]

Flags Affected:

None

Restrictions:

Destination:

x0,y0

x1,y1

x2,y2

x3,y3

a0,b0

a1,b1

a2,b2

a3,b3
4-16 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

 4.5.1.2 xymem[Index Register] = Data Path Register Pair
xymem[6-bit Address] = Data Path Register Pair

Assembler Syntax:

xymem[Index Register] = Xn,Yn;= update
xymem[6-bit Address] = Xn,Yn

xymem[Index Register] = An,Bn

xymem[6-bit Address] = An,Bn

Example:

xymem[i0] = x0,y0

xymem[0x23] = x2,y2

xymem[i7] = a3,b3

xymem[0x03] = a2,b2

Flags Affected:

L limit

T1,T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 will only have values of 10b, 01b, or 00b.

Restrictions:

Source:

x0,y0

x1,y1

x2,y2

x3,y3

a0,b0

a1,b1

a2,b2

a3,b3
DS795UM11 4-17
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

 4.5.2 Accumulator to or from XY Memory

 4.5.2.1 Accum = xymem[Index Register]
Accum = xymem[6-bit Address]

Long data transfer between XY memory and an accumulator. Either indexed or direct
addressing (6 bit) can be used. Index registers can be updated.

Assembler Syntax:

Accum = xymem[Index Register];= update
Accum = xymem[6-bit Address]

Example:

b3 = xymem[i7]

a0 = xymem[0x30]

Flags Affected:

None

Restrictions:

Destination

a0

a1

a2

a3

b0

b1

b2

b3

 4.5.2.2 xymem[Index Register] = Accum
xymem[6-bit Address] = Accum

Assembler Syntax:

xymem[Index Register] = Accum;= update
xymem[6-bit Address] = Accum

Example:

xymem[i7] = b0

xymem[0x24] = a3
4-18 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Flags Affected:

L limit

T1,T0 Shift bits

Note: If Reg is an accumulator, then the L, T1, and T0 are affected. After these flags are set, they
must be cleared manually by the user. T0 and T1 only have values of 10b, 01b, or 00b.

Restrictions:

Source:

a0

a1

a2

a3

b0

b1

b2

b3

 4.6 Index Register Updates

 4.6.1 In = Im ± (6-bit Data)

Add 6-bit immediate data to source index register and place result in destination index
register. Source register (Im) is limited to i8-i11.

Addition is governed by the current state of the NM register associated with the source Index
register (Im).

This instruction uses the AGU and hence does not require a subsequent dead-cycle before
the index register is used. For example, the following code is valid:

i0 = i8 + (0x12)

x0 = xmem[i0]

Assembler Syntax:

In = Im + (6-bit Data)

In = Im - (6-bit Data)

Examples:

i0 = i9 + (0x12)

i4 = i8 - (0x34)

Flags Affected:

None
DS795UM11 4-19
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Restrictions:

Destination:

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

Source:

i8

i9

i10

i11

 4.6.2 In ±= 1/2/N

Normal index register update without associated move. Operation occurs in the decode state.

Assembler Syntax:

In ±= 1/2/n

Examples:

i0 += 1

i4 -= n

Flags Affected:

None
4-20 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Moves
32-bit DSP Assembly Programmer’s Guide

4

Restrictions:

Destination:

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11
DS795UM11 4-21
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Chapter 5

5Multifunction Operations

 5.1 Multifunction Arithmetic Instructions
Single or parallel arithmetic instructions can be done by themselves or with multifunction
moves.

 5.1.1 Parallel Multiply/Multiply-Accumulate I

Parallel multiply or multiply accumulate, result in one or two accumulators.

Assembler Syntax:

Aq=Ar ±= Xn*Xm;Bq=Br ±= Yn*Xm

Aq=Ar ±= Xn*Xm;Bq=Br ±= -Yn*Xm

Aq=Ar ±= Xn*Ym;Bq=Br ±= Yn*Ym

Aq=Ar ±= Xn*Ym;Bq=Br ±= -Yn*Ym

Aq=Ar ±= Yn*Xm;Bq=Br ±= Xn*Xm

Aq=Ar ±= Yn*Xm;Bq=Br ±= -Xn*Xm

Aq=Ar ±= Yn*Ym;Bq=Br ±= Xn*Ym

Aq=Ar ±= Yn*Ym;Bq=Br ±= -Xn*Ym

Aq=Ar ±= -Xn*Xm;Bq=Br ±= Yn*Xm

Aq=Ar ±= -Xn*Xm;Bq=Br ±= -Yn*Xm

Aq=Ar ±= -Xn*Ym;Bq=Br ±= Yn*Ym

Aq=Ar ±= -Xn*Ym;Bq=Br ±= -Yn*Ym

Aq=Ar ±= -Yn*Xm;Bq=Br ±= Xn*Xm

Aq=Ar ±= -Yn*Xm;Bq=Br ±= -Xn*Xm

Aq=Ar ±= -Yn*Ym;Bq=Br ±= Xn*Ym

Aq=Ar ±= -Yn*Ym;Bq=Br ±= -Xn*Ym

Example:

a0=x2*x3;b0=y2*x3

a0=x2*x3;b0=-y2*x3

a1=a0+=x0*y2;b1=b0+=y0*y2

a1=a0+=x0*y2;b1=b0-=y0*y2

a2=a3=-y1*x1;b2=b3=-x1*x1

a2=a3=-y1*x1;b2=b3=x1*x1

a1-=y3*y0; b1-=x3*y0

a1-=y3*y0; b1+=x3*y0

a0=-x2*x3;b0=y2*x3

a0=-x2*x3;b0=-y2*x3

a1=a0-=x0*y2;b1=b0+=y0*y2
DS795UM11 5-1
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

a1=a0-=x0*y2;b1=b0-=y0*y2

a2=a3=-y1*x1;b2=b3=-x1*x1

a2=a3=-y1*x1;b2=b3=x1*x1

a1+=y3*y0; b1-=x3*y0

a1+=y3*y0; b1+=x3*y0

Flags Affected:

None.

 5.1.2 Parallel Multiply/Multiply-Accumulate II

Parallel Multiply/Multiply-Accumulate II (Double FIR) allows one register (X or Y) times two
different registers. The arithmetic operators preceding the source register must be the same
for both instructions, which together make up this parallel instruction.

Example:

Aq=Ap += Xn*Yn; Bq=Bp += Xn*Xm

Aq=Ap -= Xn*Yn; Bq=Bp -= Xn*Xm

Assembler Syntax:

Aq=Ap ±= Xn*Yn;Bq=Bp ±= Xn*Xm

Aq=Ap ±= Xn*Yn;Bq=Bp ±= Xn*Ym

Aq=Ap ±= Xn*Xm;Bq=Bp ±= Xn*Yn

Aq=Ap ±= Xn*Ym;Bq=Bp ±= Xn*Yn

Aq=Ap ±= Yn*Xn;Bq=Bp ±= Yn*Xm

Aq=Ap ±= Yn*Xn;Bq=Bp ±= Yn*Ym

Aq=Ap ±= Yn*Xm;Bq=Bp ±= Yn*Xn

Aq=Ap ±= Yn*Ym;Bq=Bp ±= Yn*Xn

Aq=Ap = -XY;Bq=Bp = -XX

Aq=Ap = -XY;Bq=Bp = -XY

Aq=Ap = -XX;Bq=Bp = -XY

Aq=Ap = -YX;Bq=Bp = -YX

Aq=Ap = -YX;Bq=Bp = -YY

Aq=Ap = -YY;Bq=Bp = -YX

Example:

a3-= x0*y0;b3-= x0*x2

a1=a0= x0*y0;b1=b0= x0*y3

a1= -x1*x1;b1= -x1*y1

a2=a3+= x1*y2;b2=b3+= x1*y1

a3=a1= -y3*x3;b3=b1= -y3*x2

a0=a2-= y2*x2;b0=b2-= y2*y0

a2= y0*x2;b2= y0*x0

a0+= y3*y0;b0+= y3*x3
5-2 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

None

Restrictions:

Destination:

a0,b0

a1,b1

a2,b2

a3,b3

a1a0,b1b0

a3a1,b3b1

a0a2,b0b2

a2a3,b2b3

 5.1.3 Real Multiply/Multiply-Accumulate

Multiply or multiply accumulate, result in an accumulator. Special mode allows one
multiplicative operator to be treated as an unsigned value, range (0 to 1.99999) instead of (-1
to.99994). Unsigned by unsigned multiples are only valid for results (1.99999).

Assembler Syntax:

Accum ?= -Xn*Xm

Accum ?= -Xn*(unsigned)Ym

Accum ?= -Xm*Yn

Accum ?= -Yn*Xm

Accum ?= -Yn*Ym

Accum ?= -(unsigned)Xn*(unsigned)Ym

Accum ?= -Xn*(unsigned)Ym

Example:

a1 = x0*x3

b3 = x3*(unsigned)y3

b0 += x1*y2

a1 -= y2*x1

b2 = y0*y0

a0 = (unsigned)x0*(unsigned)y0

Flags Affected:

None
DS795UM11 5-3
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Restrictions:

Destination:

a0

a1

a2

a3

b0

b1

b2

b3

 5.1.4 Parallel Squares

Square data registers, store or accumulate, result in one or two accumulators.

Assembler Syntax:

Aq = Ar ±= -Xn*Xn;Bq = Br ±= -Yn*Ym

Example:

a0 = x2*x2;b0 = y2*y1

a3=a1+=x2*x2;b3=b1+=y2*y1

Flags Affected:

None.

Restrictions:

Destination:

a0,b0

a1,b1

a2,b2

a3,b3

a1a0,b1b0

a3a1,b3b1

a0a2,b0b2

a2a3,b2b3
5-4 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

 5.1.5 Parallel Multiply with Add

Multiply two data registers, add accumulator (A0 or B0 only), store result in one or two
accumulators.

Assembler Syntax:

Aq = Ar = A0±Xn*Xm;Bq = Br = B0±Yn*Xm

Aq = Ar = A0±Xn*Ym;Bq = Br = B0±Yn*Ym

Example:

a1=a0-x2*x1; b1=b0-y2*x1

a2=a3=a0-x3*y0; b2=b3=b0-y3*y0

a1=a0=a0+x1*y1; b1=b0=b0+y1*y1

Flags Affected:

None

Restrictions:

Destination:

a0,b0

a1,b1

a2,b2

a3,b3

a1a0,b1b0

a3a1,b3b1

a0a2,b0b2

a2a3,b2b3

 5.1.6 Multiply by One with Optional Accumulate

Move or accumulate X or Y register into A or B accumulator.

Note: The syntax ‘b3 = +x2’ is used to differentiate between this instruction and the move
‘b3 = x2’. See Section 4.1.5.2 for a discussion of the differences.

Assembler Syntax:

Accum ±= Xn

Accum ±= Yn

Accum = ±Xn

Accum = ±Yn

Example:

b3 = +x2
a2 -= y0
DS795UM11 5-5
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

None.

Restrictions:

Destination:

a0

a1

a2

a3

b0

b1

b2

b3

 5.1.7 Parallel Multiply by One with Optional Accumulate

Move or accumulate X or Y registers into A or B accumulators.

Note: The syntax ‘b3 = +x2’ is used to differentiate between this instruction and the move
‘b3 = x2’. See Section 4.1.5.2 for a discussion of the differences.

Assembler Syntax:

Aq = Ap ±= ±Xn;Bq = Bp ±= ±Yn

Aq = Ap ±= ±Yn;Bq = Bp ±= ±Xn

Example:

a3 = +x0;b3 = +y0

a3 = a1 -= y2;b3 = b1 -= x2

Flags Affected:

None.

Restrictions:

Destination:

a0,b0

a1,b1

a2,b2

a3,b3

a1a0,b1b0

a3a1,b3b1

a0a2,b0b2

a2a3,b2b3
5-6 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

 5.2 Multifunction Accumulator Instructions
Least significant 16 bits of instruction. Affects the zero and negative bits in the CCR.

 5.2.1 Parallel Add with Shift

Parallel add or subtract two accumulators, result in an accumulator. One of the operands can
be shifted.

Assembler Syntax:

Ap=An  Am;Bp=Bn  Bm
Ap=An  Bm;Bp=Bn  Am
Ap=(An * 2)  Am;Bp=(Bn * 2)  Bm
Ap=(An * 2)  Bm;Bp=(Bn * 2)  Am

Example:

a1 = a2+a3;b1 = b2+b3

a3 = a0-b0;b3 = b0-a0

a3 = (a2*2)+a3;b3 = (b2*2)-b3

a1 = (a1*2)-b1;b1 = (b1*2)+a1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.2 Add with Shift

Add or subtract two accumulators, result in an accumulator. One of the operands can be
shifted.

Assembler Syntax:

Ap=An  Am
Bp=Bn  Bm
Ap=An  Bm
Bp=Bn  Am
Ap=(An * 2)  Am
Bp=(Bn * 2)  Bm
Ap=(An * 2)  Bm
Bp=(Bn * 2)  Am

Example:

a3 = a2-a1
DS795UM11 5-7
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

Restrictions:

Destination:

a0

a1

a2

a3

b0

b1

b2

b3

 5.2.3 Conditional Operation - Maximum

Two accumulators are compared. If comparison is true, an accumulator to accumulator move
is performed. This accumulator move is a full 72-bit move and does not pass through the
SRS. See Section 2.5.1 for an example.

Assembler Syntax:

if (Bn>Bm) An=Am

if (An>Am) Bn=Bm

if (Bn>Am) An=Bm

if (An>Bm) Bn=Am

Example:

if (b0>b3) a0=a3

if (a1>a2) b1=b2

if (b1>a1) a1=b1

if (a2>b2) b2=a2

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign
5-8 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

 5.2.4 Conditional Operation - Minimum

Two accumulators are compared. If comparison is true, an accumulator to accumulator move
is performed. This accumulator move is a full 72-bit move and does not pass through the
SRS.

Assembler Syntax:

if (Bn<Bm) An=Am

if (An<Am) Bn=Bm

if (Bn<Am) An=Bm

if (An<Bm) Bn=Am

Example:

if (b0<b3) a0=a3
if (a1<a2) b1=b2
if (b1<a1) a1=b1
if (a2<b2) b2=a2

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.5 Conditional Operation - Absolute Value Maximum

The absolute values of two accumulators are compared. If comparison is true, an
accumulator to accumulator move is performed. This accumulator move is a full 72-bit move
and does not pass through the SRS.

Assembler Syntax:

if (|Bn|>|Bm|) An=Am

if (|An|>|Am|) Bn=Bm

if (|Bn|>|Am|) An=Bm

if (|An|>|Bm|) Bn=Am

Example:

if (|b0|>|b3|) a0=a3

if (|a1|>|a2|) b1=b2

if (|b1|>|a1|) a1=b1

if (|a2|>|b2|) b2=a2
DS795UM11 5-9
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.6 Conditional Operation - Absolute Value Minimum

The absolute values of two accumulators are compared. If comparison is true, an
accumulator to accumulator move is performed. This accumulator move is a full 72-bit move
and does not pass through the SRS.

Assembler Syntax:

if (|Bn|<|Bm|) An=Am

if (|An|<|Am|) Bn=Bm

if (|Bn|<|Am|) An=Bm

if (|An|<|Bm|) Bn=Am

Example:

if (|b0|<|b3|) a0=a3

if (|a1|<|a2|) b1=b2

if (|b1|<|a1|) a1=b1

if (|a2|<|b2|) b2=a2

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.7 Bitwise Accumulator Move

Bitwise accumulator move. This accumulator move is a full 72-bit move and does not pass
through the SRS.

Assembler Syntax:

An =+ Am

Bn =+ Bm

An =+ Bm

Bn =+ Am
5-10 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Example:

a0 =+ b3

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.8 Parallel Bitwise Accumulator Move

This is a dual bitwise accumulator move. All 72 bits of the accumulators are transferred. The
move does not pass through the SRS. An accumulator can be both a destination and a
source, so this instruction can successfully be used to swap the entire contents of two
accumulators.

For example, if two accumulators have the following values:

a0 = 0x1234567890

b0 = 0x0987654321

and the following instruction is executed:

a0 =+ b0; b0 =+ a0

after execution the accumulators have been swapped:

a0 = 0x0987654321

b0 = 0x1234567890

Assembler Syntax:

An =+ Am; Bn =+ Bm

An =+ Bm; Bn =+ Am

Example:

a0 =+ b3;b0 =+ a3

a0 =+ a1;b0 =+ b1

a0 =+ b1;b0 =+ a1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign
DS795UM11 5-11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

 5.2.9 Bitwise Complement

The one’s complement of an accumulator is stored in an accumulator.

Assembler Syntax:

AccumAccum =~ Accum;

An =~ Am

Bn =~ Bm

An =~ Bm

Bn =~ Am

Example:

a1 =~ b0

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

Note: Either A0,AS or B0,BS can be affected based on which accumulator is used.

 5.2.10 Parallel Bitwise Complement

The one’s complement of an accumulator is stored in an accumulator.

Assembler Syntax:

An =~ Am; Bn =~ Bm

An =~ Bm; Bn =~ Am

Example:

a0 =~ a1;b0 =~ b1

a0 =~ b1;b0 =~ a1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign
5-12 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

 5.2.11 AccumNegative Accumulator Move

Computes the two’s complement negative of the value in an accumulator and stores the
result in an accumulator.

Assembler Syntax:

Accum =- Accum;

An =- Am

Bn =- Bm

An =- Bm

Bn =- Am

Example:

b2 =- b1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

Note: Either A0,AS or B0,BS can be affected based on which accumulator is used.

 5.2.12 Parallel Negative Accumulator Move

Computes the two’s complement negative of the value in an accumulator and stores the
result in an accumulator.

Assembler Syntax:

An =- Am; Bn =- Bm

An =- Bm; Bn =- Am

Example:

a0 =- a1;b0 =- b1

a2 =- b1;b2 =- a1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign
DS795UM11 5-13
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

 5.2.13 Absolute Value Accumulator Move

Absolute value of an accumulator is stored in an accumulator.

Assembler Syntax:

Accum = |Accum|

An = |Am|

Bn = |Bm|

An = |Bm|

Bn = |Am|

Example:

a0 = |a1|

a3 = |b2|

b3 = |b3|

b0 = |a3|

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

Either A0,AS or B0,BS can be affected based on which accumulator is used.

Note:

 5.2.14 Parallel Absolute Value Accumulator Move

Absolute values of two accumulators are stored in two accumulators.

Assembler Syntax:

An = |Am|; Bn = |Bm|

An = |Bm|; Bn = |Am|

Example:

a0 = |a1|; b0 = |b1|

a3 = |b2|; b3 = |a2|
5-14 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.15 Bitwise OR

The bitwise OR of two accumulators is stored in an accumulator.

Assembler Syntax:

An = An | Am

Bn = Bn | Bm

An = An | Bm

Bn = Bn | Am

Example:

a0 = a0 | a3

b3 = b3 | b3

a1 = a1 | b2

b2 = b2 | a1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.16 Parallel Bitwise OR

The bitwise OR of two accumulators is stored in an accumulator.

Assembler Syntax:

An = An | Am;Bn = Bn | Bm

An = An | Bm;Bn = Bn | Am

Example:

a0 = a0 | a3;b0 = b0 | b3

a0 = a0 | b3;b0 = b0 | a3
DS795UM11 5-15
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.17 Bitwise Exclusive OR

The Bitwise Exclusive OR of two accumulators is stored in an accumulator.

Assembler Syntax:

An = An ^ Am

Bn = Bn ^ Bm

An = An ^ Bm

Bn = Bn ^ Am

Example:

a0 = a0 ^ a3

b3 = b3 ^ b3

a1 = a1 ^ b2

b2 = b2 ^ a1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.18 Parallel Bitwise Exclusive OR

The Bitwise Exclusive OR of two accumulators is stored in an accumulator.

Assembler Syntax:

An = An ^ Am;Bn = Bn ^ Bm

An = An ^ Bm;Bn = Bn ^ Am

Example:

a0 = a0 ^ a3;b0 = b0 ^ b3

a1 = a1 ^ b2;b1 = b1 ^ a2
5-16 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.19 Bitwise AND

The Bitwise AND of two accumulators is stored in an accumulator.

Assembler Syntax:

An = An & Am

Bn = Bn & Bm

An = An & Bm

Bn = Bn & Am

Example:

a0 = a0 & a3

b3 = b3 & b3

a1 = a1 & b2

b2 = b2 & a1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.20 Parallel Bitwise AND

Parallel bitwise accumulator ANDs.

Assembler Syntax:

An = An & Am;Bn = Bn & Bm

An = An & Bm;Bn = Bn & Am

Example:

a1 = a1 & a3;b1 = b1 & b3

a2 = a2 & b2;b2 = b2 & a2
DS795UM11 5-17
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.21 Bitwise Zero

Zero all 72 bits of the designated accumulator.

Assembler Syntax:

Accum = 0

Example:

a2 = 0

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

Note: Either A0,AS or B0,BS can be affected based on which accumulator is used.

 5.2.22 Parallel Bitwise Zero

Zero all 72 bits of the designated accumulator.

Assembler Syntax:

An = 0; Bn = 0

Example:

a2 = 0;b2 = 0

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign
5-18 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

 5.2.23 Bitwise Shift Left by One

Accumulator is shifted left by one. A zero is placed in the least significant bit, the most
significant bit is lost.

Assembler Syntax:

An = An << 1

Bn = Bn << 1

Example:

a0 = a0 << 1

b2 = b2 << 1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.24 Parallel Bitwise Shift Left by One

Accumulator is shifted left by one. A zero is placed in the least significant bit, the most
significant bit is lost.

Assembler Syntax:

An = An << 1; Bn = Bn << 1

Example:

a0 = a0 << 1; b0 = b0 << 1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.25 Bitwise Shift Left by Four

Accumulator is shifted left by four. Four zeros are placed in the least significant bits. The most
significant 4 bits are lost.
DS795UM11 5-19
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Assembler Syntax:

An = An << 4

Bn = Bn << 4

Example:

a0 = a0 << 4

b2 = b2 << 4

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.26 Parallel Bitwise Shift Left by Four

Accumulator is shifted left by four. Four zeros are placed in the least significant bits. The most
significant 4 bits are lost.

Assembler Syntax:

An = An << 4;Bn = Bn << 4

Example:

a0 = a0 << 4;b0 = b0 << 4

a3 = a3 << 4;b3 = b3 << 4

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.27 Bitwise Shift Left by Eight

Accumulator is shifted left by eight. Eight zeros are placed in the least significant bits. The
most significant 8 bits are lost.

Assembler Syntax:

An = An << 8

Bn = Bn << 8
5-20 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Example:

a0 = a0 << 8

b2 = b2 << 8

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.28 Parallel Bitwise Shift Left by Eight

Accumulator is shifted left by eight. Eight zeros are placed in the least significant bits, the
most significant 8 bits are lost.

Assembler Syntax:

An = An << 8;Bn = Bn << 8

Example:

a0 = a0 << 8;b0 = b0 << 8

a3 = a3 << 8;b3 = b3 << 8

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.29 Bitwise Shift Right by One

Accumulator is shifted right by one. The most significant bit is sign extended from the current
value, the least significant bit is lost.

Assembler Syntax:

An = An >> 1

Bn = Bn >> 1

Example:

a2 = a2 >> 1

b3 = b3 >> 1
DS795UM11 5-21
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.30 Parallel Bitwise Shift Right by One

Accumulator is shifted right by one. The most significant bit is sign extended from the current
value, the least significant bit is lost.

Assembler Syntax:

An = An >> 1;Bn = Bn >> 1

Example:

a2 = a2 >> 1;b2 = b2 >> 1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.31 Bitwise Test

The bitwise AND of the accumulators is performed, and the appropriate bits in the CCR are
set according to the first accumulator. Neither accumulator is altered.

Assembler Syntax:

An & Am

Bn & Bm

An & Bm

Bn & Am

Example:

a0 & a1

b2 & b2

a1 & b1

b2 & a3
5-22 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.32 Parallel Bitwise Test

The bitwise AND of the accumulators is performed, and the appropriate bits in the CCR are
set according to the first accumulator. Neither accumulator is altered.

Assembler Syntax:

An & Am;Bn & Bm

An & Bm;Bn & Am

Example:

a0 & a1;b0 & b1

a1 & b1;b1 & a1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.33 Bitwise Compare

A bitwise comparison of the accumulators is performed, and the appropriate bits in the CCR
are set according to the first accumulator. Neither accumulator is altered.

Assembler Syntax:

An - Am

Bn - Bm

An - Bm

Bn - Am

Example:

a0 - a1

b2 - b2

a1 - b1

b2 - a3
DS795UM11 5-23
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.34 Parallel Bitwise Compare

A bitwise comparison of the accumulators is performed, and the appropriate bits in the CCR
are set according to the first accumulator. Neither accumulator is altered.

Assembler Syntax:

An - Am;Bn - Bm

An - Bm;Bn - Am

Example:

a0 - a1;b0 - b1

a1 - b1;b1 - a1

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.35 Bitwise Absolute Value Compare

A bitwise comparison of the absolute values of the accumulators is performed, and the
appropriate bits in the CCR are set according to the first accumulator. Neither accumulator is
altered.

Assembler Syntax:

|An| - |Am|

|Bn| - |Bm|

|An| - |Bm|

|Bn| - |Am|
5-24 DS795UM11
Copyright 2013 Cirrus Logic

Multifunction Operations
32-bit DSP Assembly Programmer’s Guide

5

Example:

|a0|-|a1|

|b2|-|b2|

|a1|-|b1|

|b2|-|a3|

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign

 5.2.36 Parallel Bitwise Absolute Value Compare

A bitwise comparison of the absolute values of the accumulators is performed, and the
appropriate bits in the CCR are set according to the first accumulator. Neither accumulator is
altered.

Assembler Syntax:

|An| - |Am|;|Bn| - |Bm|

|An| - |Bm|;|Bn| - |Am|

Example:

|a0|-|a1|; |b0|-|b1|

|a1|-|b1|; |b1|-|a1|

Flags Affected:

A0 A zero

AS A sign

B0 B zero

BS B sign
DS795UM11 5-25
Copyright 2013 Cirrus Logic

Glossary
32-bit DSP Assembly Programmer’s Guide

A

Appendix A

1Glossary

Table A-1. Glossary Terms

Term Definition

AGU Address Generation Unit.

ALU Arithmetic Logic Unit.

API Application Programmers Interface.

BIBO Bounded Input Bounded Output.

CASMSPEC Environment variable that is the default assembler option.

CCR Condition Code Register.

Complex Memory
Treating the same address across both X and Y Data memory as one complex value with the real part in
X and the imaginary part in Y.

DSPAB DSPA and DSPB.

DSPC The third DSP in CS495xx.

FFT Fast Fourier Transform.

Fast Interrupts
Short Interrupts
One-Instruction Interrupts

Interrupts that consist solely of a single instruction.

IFFT Inverse Fast Fourier Transform.

IMG file The image (RAM) information for an application.

ISI Interrupt Service Instruction.

ISR Interrupt Service Routine.

Limiting
Saturating

These terms are used interchangeably.

Long Interrupts
Slow Interrupts
Multi-Instruction Interrupts

If an interrupt needs to execute more than one instruction, the callint instruction is used for the ISI. This
is referred to as a Long Interrupt. The callint instruction disables interrupts, pushes the PC onto the
Subroutine Stack, and starts executing the specified ISR. The final instruction of the ISR should be
retcc, which pops the PC and enable interrupts. The call or jmp instructions can also be used as ISIs,
but they will not disable interrupts, allowing the possibility of code reentrance. This is especially
dangerous when using call due to the possibility of overflowing the Subroutine Stack, which leaves the
processor in an unknown state.

Long Memory Treating the same address across both X and Y Data memory as one double precision 64-bit value.

MAC Multiply-Accumulator.

MR Mode Register.
DS795UM11 A-1
Copyright 2013 Cirrus Logic

Glossary
32-bit DSP Assembly Programmer’s Guide

A

Multifunction Instruction

Combining a 16-bit encoded move in the most significant 16 bits of a 32-bit opcode with a 16-bit
encoded MAC/ALU operation in the least significant 16 bits results in a 32-bit multifunction instruction. A
“NOP” is a valid 16-bit instruction for either half.

O file
The assembled form of a portion of a module.
Output from: casm.exe
Input to: clib.exe (or clink.exe)

Parallel or Dual
Instructions

Encoding two moves or two MAC/ALU operations in one 16-bit opcode results in a Parallel Instruction.
Parallel Instructions can be used in Multifunction Instructions.

SRS Shifter/Rounder/Saturator.

ULD file The image information for an application, possibly encrypted and properly formatted for booting.

Table A-1. Glossary Terms (Continued)

Term Definition
A-2 DS795UM11
Copyright 2013 Cirrus Logic

List of Instructions by Category and Flag Reference
32-bit DSP Assembly Programmer’s Guide

B

 Appendix B

2List of Instructions by Category and Flag Reference

Table B-1. Instruction / Flag Reference Table

Instructions with Links to Instructions / Flags (Red)

Execution Control Instructions (Section 3.3 on page 3-2)
do - Start Hardware Loop
enddo - End Current Do-Loop
do_patch - Jump to Patch
jmp - Jump
if - Jump Conditionally
call - Jump To Subroutine
callint - Answer Interrupt
callint_stq - Answer Stack Interrupt
ret - Return From Subroutine
retint - Return From Interrupt
retint_stq - Return From Stack Interrupt
inten - Enable Interrupts
intdis - Disable Interrupts
halt - Stop Further Execution
nop - No Operation

64-bit Peripheral Moves (Section 3.4 on page 3-12)
XY Register Pair = ext(16-bit Address)]
Accum = ext(16-bit Address)
ext(16-bit Address) = XY Register Pair
ext(16-bit Address) = Accum (L, T1, T0)
logexp = XY Register Pair
XY Register Pair = logexp

Memory Moves - Direct (Section 3.5 on page 3-19)
Any Reg = xmem[16-bit Address]
xmem[16-bit Address] = Any Reg (L, T1, T0)
Any Reg = ymem[16-bit Address]
xmem[16-bit Address] = Any Reg (L, T1, T0)
MS Reg - See Table 2-25.
pmem[16-bit Address] = Any Reg (L, T1, T0)
Any Reg = inp[16-bit Address]
outp[16-bit Address] = Any Reg (L, T1, T0)
Any Reg = xmem[Index Register]
xmem[Index Register] = Any Reg (L, T1, T0)
Any Reg = ymem[Index Register]
ymem[Index Register] = Any Reg (L, T1, T0)
Any Reg = pmem[Index Register]
pmem[Index Register] = Any Reg (L, T1, T0)
outp[Index Register] = Any Reg (L, T1, T0)
Any Reg = inp[Index Register]
DS795UM11 B-1
Copyright 2013 Cirrus Logic

List of Instructions by Category and Flag Reference
32-bit DSP Assembly Programmer’s Guide

B
 Immediate Register Loads (Section 3.6 on page 3-36)
fixed16(Destination) = (16-bit Data)
ufixed16(Destination) = (16-bit Data)
uhalfword(Destination) = (16-bit Data)
Index Register = (16-bit Data)
NM Register = (16-bit Data)
Guard Register = (8-bit Data)
halfword(Destination) = (16-bit Data)
lo16(Destination) = (16-bit Data)
MS Reg = (16-bit Data)
AnyReg(Any Reg, Any Reg) (L, T1, T0)
Any Reg = MS Reg (L, T1, T0)
MS Reg = Any Reg (L, T1, T0)
AnyReg (Any Reg, Any Reg), (Any Reg, Any Reg) (L, T1, T0)
nm4 - nm7 (L, T1, T0)
In = Im/(0) ± (16-bit Data)

Bit Manipulation Instructions (Section 3.7.1 on page 3-48)
Bit Test (Z or Zero)
Bit Set (Z or Zero)
Bit Clear (Z or Zero)
MS Reg - See Table 2-25. (Z or Zero)

Multifunction Moves (Section 4.1 on page 4-1)
DP Reg = xmem[Index Register] DP Reg = xmem[6-bit Address]
xmem[Index Register] = DP Reg xmem[6-bit address] = DP Reg (L, T1, T0)
DP Reg = ymem[Index Register] DP Reg = ymem[6-bit address]
ymem[Index Register] = DP Reg ymem[6-bit address] = DP Reg (L, T1, T0)

Data Path Register to or from Any Register
DP Reg = Any Reg
Any Reg = DP Reg (L, T1, T0)

Parallel Multifunction Moves (Section 4.2 on page 4-10)
Data Path Register to/from X or Y Memory
Xn = xmem[Index Register]
xmem[Index Register] = An (L, T1, T0)
Ym = ymem[Index Register]
ymem[Index Register] = Bm (L, T1, T0)

Data Path Register to Data Path Register (Section 4.3 on page 4-13)
DP Reg = DP Reg

64-bit Multifunction Moves
Data Path Register Pair to or from XY Memory (Section 4.5.1 on page 4-16)
Data Path Register Pair = xymem[Index Register] Data Path Register Pair = xymem[6-bit Address]
xymem[Index Register] = Data Path Register Pair xymem[6-bit Address] = Data Path Register Pair (L, T1, T0)
Accumulator to or from XY Memory (Section 4.5.2 on page 4-18)
Accum = xymem[Index Register] Accum = xymem[6-bit Address]
xymem[Index Register] = Accum xymem[6-bit Address] = Accum (L, T1, T0)

Index Register Updates (Section 4.6 on page 4-19)
In = Im ± (6-bit Data)
In ±= 1/2/N

Table B-1. Instruction / Flag Reference Table (Continued)

Instructions with Links to Instructions / Flags (Red)
B-2 DS795UM11
Copyright 2013 Cirrus Logic

List of Instructions by Category and Flag Reference
32-bit DSP Assembly Programmer’s Guide

B
Multifunction Operations
Multifunction Arithmetic Instructions (Section 5.1.1 on page 5-1)
Parallel Multiply/Multiply-Accumulate I
Parallel Multiply/Multiply-Accumulate II
Real Multiply/Multiply-Accumulate
Parallel Squares
Parallel Multiply with Add
Multiply by One with Optional Accumulate
Parallel Multiply by One with Optional Accumulate

Multifunction Accumulator Instructions (Section 5.2.1 on page 5-7)
Parallel Add with Shift (A0, AS, B0, BS)
Add with Shift (A0, AS, B0, BS)
Conditional Operation - Maximum (A0, AS, B0, BS)
Conditional Operation - Minimum (A0, AS, B0, BS)
Conditional Operation - Absolute Value Maximum (A0, AS, B0, BS)
Conditional Operation - Absolute Value Minimum (A0, AS, B0, BS)
Bitwise Accumulator Move (A0, AS, B0, BS)
Parallel Bitwise Accumulator Move (A0, AS, B0, BS)
Bitwise Complement (A0, AS, B0, BS)
Parallel Bitwise Complement (A0, AS, B0, BS)
AccumNegative Accumulator Move (A0, AS, B0, BS)
Parallel Negative Accumulator Move (A0, AS, B0, BS)
Absolute Value Accumulator Move (A0, AS, B0, BS)
Parallel Absolute Value Accumulator Move (A0, AS, B0, BS)
Bitwise OR (A0, AS, B0, BS)
Parallel Bitwise OR (A0, AS, B0, BS)
Bitwise Exclusive OR (A0, AS, B0, BS)
Parallel Bitwise Exclusive OR (A0, AS, B0, BS)
Bitwise AND (A0, AS, B0, BS)
Parallel Bitwise AND (A0, AS, B0, BS)
Bitwise Zero (A0, AS, B0, BS)
Parallel Bitwise Zero (A0, AS, B0, BS)
Bitwise Shift Left by One (A0, AS, B0, BS)
Parallel Bitwise Shift Left by One (A0, AS, B0, BS)
Bitwise Shift Left by Four (A0, AS, B0, BS)
Parallel Bitwise Shift Left by Four (A0, AS, B0, BS)
Bitwise Shift Left by Eight (A0, AS, B0, BS)
Parallel Bitwise Shift Left by Eight (A0, AS, B0, BS)
Bitwise Shift Right by One (A0, AS, B0, BS)
Parallel Bitwise Shift Right by One (A0, AS, B0, BS)
Bitwise Test (A0, AS, B0, BS)
Parallel Bitwise Test (A0, AS, B0, BS)
Bitwise Compare (A0, AS, B0, BS)
A bitwise comparison of the accumulators is performed, and the appropriate bits in the CCR are set according
to the first accumulator. Neither accumulator is altered. (A0, AS, B0, BS)
Bitwise Absolute Value Compare (A0, AS, B0, BS)
Parallel Bitwise Absolute Value Compare (A0, AS, B0, BS)

Table B-1. Instruction / Flag Reference Table (Continued)

Instructions with Links to Instructions / Flags (Red)
DS795UM11 B-3
Copyright 2013 Cirrus Logic

List of Instructions by Category and Flag Reference
32-bit DSP Assembly Programmer’s Guide

B

Revision History

Revision Date Changes

UM7 December, 2011
Updated Section 1.4.16.3 to document .data_ovly, .xdata_ovly, .ydata_ovly, and .code_ovly
segment macros. Added Section 3.3.16.

UM8 March, 2012 Added .undef token to Section 1.4.16.6. Updated Section 1.4.16.9 to explain struct inside struct.

UM9 June, 2012
Added example to Table 1-8. Added Section 1.4.14, Section 2.7.3, and Section 2.7.4. Updated
Section 3.4.5.

UM10 April, 2013
Updated description of jsr_data Register in Section 2.4.9. Added new status bits to MR register in
Section 2.4.19. Added examples to Section 2.4.21.

UM11 September, 2013
Updated .strpos example in Table 1-9. Updated description of .extern <symbols> and added
.export <symbols> to Macros Table 1-10.
B-4 DS795UM11
Copyright 2013 Cirrus Logic

	32-bit DSP Assembly Programmer's Guide
	Table of Contents

	1 Cirrus Logic Assembly Program (CASM)
	1.1 Welcome to CASM
	1.2 Accessing CASM Through the CLIDE GUI
	1.3 Accessing CASM Through the Assembler Command Line
	1.3.1 Command Line Format
	1.3.2 Command Line Options
	1.3.3 Command Line Examples

	1.4 Assembly Language Format
	1.4.1 Code Line Format
	1.4.2 Comment Character
	1.4.3 Case Sensitivity
	1.4.4 Symbol Definition
	1.4.5 Local Symbol Definition and Use
	1.4.6 Expressions
	1.4.6.1 Floating-point Expressions
	1.4.6.2 Address Expressions

	1.4.7 Constants
	1.4.7.1 Floating Point Literals
	1.4.7.2 Integer Literals
	1.4.7.2.1 Prefix Radix Specification
	1.4.7.2.2 Postfix Radix Specification

	1.4.7.3 String Literals

	1.4.8 Unary Operators
	1.4.9 Binary Operators
	1.4.9.1 Precedence of Operators

	1.4.10 Expression Examples
	1.4.11 Built-in Functions
	1.4.12 Mathematical Functions
	1.4.13 Conversion Functions
	1.4.14 Loading Immediate Values to Registers
	1.4.15 String Functions
	1.4.16 Assembler Directives
	1.4.16.1 Code Modularity
	1.4.16.2 Memory Segments
	1.4.16.3 Symbol Assignment
	1.4.16.4 Data Memory Assignment
	1.4.16.5 Conditional Assembly
	1.4.16.6 Token Substitution
	1.4.16.7 Listing and Message Control
	1.4.16.8 Assembler Warning/Error Control
	1.4.16.9 Data Structure Types
	1.4.16.10 Sizeof Function
	1.4.16.11 Assert Directive

	1.4.17 Macro Definition and Calling
	1.4.18 Macro Replication
	1.4.19 Assembly Language Example

	2 32-Bit DSP Internal Architecture and Programming Model
	2.1 Overview
	2.2 Data Path and Accumulators Unit
	2.2.1 Data Representation
	2.2.2 Accumulator Data Transfers
	2.2.2.1 Move to Accumulator
	2.2.2.2 Moving from Accumulator
	2.2.2.3 Saturation Examples
	2.2.2.4 Rounding Examples
	2.2.2.5 Shifting Examples

	2.3 Parallel Address Generation Unit
	2.3.1 Addressing Modes
	2.3.1.1 Modulo Addressing
	2.3.1.2 Reverse Binary Addressing
	2.3.1.3 Immediate Addressing
	2.3.1.4 Indexed Addressing
	2.3.1.4.1 Index Register Updates
	2.3.1.4.2 Parallel Index Register Updates
	2.3.1.4.3 Index Register Loading
	2.3.1.4.4 Index Register Loading Restrictions

	2.4 Program Control Unit
	2.4.1 Program Counter
	2.4.2 Subroutine Stack
	2.4.3 Loop Stack
	2.4.4 Subroutine Stack and Loop Stack Common Implementations
	2.4.5 jsr_mode Register
	2.4.6 lst_mode Register
	2.4.7 stq_base Register
	2.4.8 mr_jsr_ptr Register
	2.4.9 jsr_data Register
	2.4.10 mr_lst_ptr Register
	2.4.11 lp_data1 Register
	2.4.12 lp_data2 Register
	2.4.13 lst_data1 Register
	2.4.14 lst_data2 Register
	2.4.15 jsr_ovf Register
	2.4.16 jsr_unf Register
	2.4.17 lst_ovf Register
	2.4.18 lst_unf Register
	2.4.19 Mode Register
	2.4.20 Condition Code Register
	2.4.21 Loop Stack Example

	2.5 Master State Registers (MSREGS)
	2.5.1 Search Registers
	2.5.2 Random Number Generator

	2.6 Interrupt Controller
	2.6.1 Fast Interrupts
	2.6.2 Long Interrupts
	2.6.3 Masking
	2.6.3.1 IMask
	2.6.3.2 IRMask

	2.7 Instruction Restrictions
	2.7.1 Code Example, Broken Code
	2.7.2 Code Example, Fixed Code
	2.7.3 Successive but Orthagonal Operations that Affect the CCR
	2.7.4 If Statements and the CCR

	3 Full Word Instructions
	3.1 Assembly Language Syntax
	3.2 Conventions
	3.3 Execution Control Instructions
	3.3.1 do - Start Hardware Loop
	3.3.2 enddo - End Current Do-Loop
	3.3.3 do_patch - Jump to Patch
	3.3.4 jmp - Jump
	3.3.5 if - Jump Conditionally
	3.3.6 call - Jump To Subroutine
	3.3.7 callint - Answer Interrupt
	3.3.8 callint_stq - Answer Stack Interrupt
	3.3.9 ret - Return From Subroutine
	3.3.10 retint - Return From Interrupt
	3.3.11 retint_stq - Return From Stack Interrupt
	3.3.12 inten - Enable Interrupts
	3.3.13 intdis - Disable Interrupts
	3.3.14 halt - Stop Further Execution
	3.3.15 nop - No Operation
	3.3.16 _breakpt - Breakpoint Instruction

	3.4 64-bit Peripheral Moves
	3.4.1 XY Register Pair = ext(16-bit Address)
	3.4.2 Accum = ext(16-bit Address)
	3.4.3 ext(16-bit Address) = XY Register Pair
	3.4.4 ext(16-bit Address) = Accum
	3.4.5 logexp = XY Register Pair
	3.4.6 XY Register Pair = logexp

	3.5 Memory Moves - Direct
	3.5.1 Any Reg = xmem[16-bit Address]
	3.5.2 xmem[16-bit Address] = Any Reg
	3.5.3 Any Reg = ymem[16-bit Address]
	3.5.4 ymem[16-bit Address] = Any Reg
	3.5.5 Any Reg = pmem[16-bit Address]
	3.5.6 pmem[16-bit Address] = Any Reg
	3.5.7 Any Reg = inp[16-bit Address]
	3.5.8 outp[16-bit Address] = Any Reg
	3.5.9 Any Reg = xmem[Index Register]
	3.5.10 xmem[Index Register] = Any Reg
	3.5.11 Any Reg = ymem[Index Register]
	3.5.12 ymem[Index Register] = Any Reg
	3.5.13 Any Reg = pmem[Index Register]
	3.5.14 pmem[Index Register] = Any Reg
	3.5.15 outp[Index Register] = Any Reg
	3.5.16 Any Reg = inp[Index Register]

	3.6 Immediate Register Moves
	3.6.1 fixed16(Destination) = (16-bit Data)
	3.6.2 ufixed16(Destination) = (16-bit Data)
	3.6.3 uhalfword(Destination) = (16-bit Data)
	3.6.4 Index Register = (16-bit Data)
	3.6.5 NM Register = (16-bit Data)
	3.6.6 Guard Register = (8-bit Data)
	3.6.7 halfword(Destination) = (16-bit Data)
	3.6.8 lo16(Destination) = (16-bit Data)
	3.6.9 MS Reg = (16-bit Data)
	3.6.10 AnyReg(Any Reg, Any Reg)
	3.6.11 Any Reg = MS Reg
	3.6.12 MS Reg = Any Reg
	3.6.13 AnyReg (Any Reg, Any Reg), (Any Reg, Any Reg)
	3.6.14 Accum = long(Accum)
	3.6.15 In = Im/(0) ± (16-bit Data)

	3.7 Bit Manipulation Instructions
	3.7.1 Bit Test
	3.7.2 Bit Set
	3.7.3 Bit Clear
	3.7.4 Bit Change

	4 Multifunction Moves
	4.1 Single Multifunction Moves
	4.1.1 DP Reg = xmem[Index Register] DP Reg = xmem[6-bit Address]
	4.1.2 xmem[Index Register] = DP Reg xmem[6-bit address] = DP Reg
	4.1.3 DP Reg = ymem[Index Register] DP Reg = ymem[6-bit address]
	4.1.4 ymem[Index Register] = DP Reg ymem[6-bit address] = DP Reg
	4.1.5 Data Path Register to or from Any Register
	4.1.5.1 DP Reg = Any Reg
	4.1.5.2 Any Reg = DP Reg

	4.2 Parallel Multifunction Move Instructions
	4.2.1 Xn = xmem[Index Register]
	4.2.2 xmem[Index Register] = An
	4.2.3 Ym = ymem[Index Register]
	4.2.4 ymem[Index Register] = Bm

	4.3 Data Path Register to Data Path Register Instructions
	4.3.1 DP Reg = DP Reg

	4.4 Parallel Register to/from Register Instructions
	4.4.1 Data Path Register to Data Path Register and Data Path Register to/from X or Y Memory Restrictions

	4.5 64-bit Multifunction Moves
	4.5.1 Data Path Register Pair to or from XY Memory
	4.5.1.1 Data Path Register Pair = xymem[Index Register] Data Path Register Pair = xymem[6-bit Address]
	4.5.1.2 xymem[Index Register] = Data Path Register Pair xymem[6-bit Address] = Data Path Register Pair

	4.5.2 Accumulator to or from XY Memory
	4.5.2.1 Accum = xymem[Index Register] Accum = xymem[6-bit Address]
	4.5.2.2 xymem[Index Register] = Accum xymem[6-bit Address] = Accum

	4.6 Index Register Updates
	4.6.1 In = Im ± (6-bit Data)
	4.6.2 In ±= 1/2/N

	5 Multifunction Operations
	5.1 Multifunction Arithmetic Instructions
	5.1.1 Parallel Multiply/Multiply-Accumulate I
	5.1.2 Parallel Multiply/Multiply-Accumulate II
	5.1.3 Real Multiply/Multiply-Accumulate
	5.1.4 Parallel Squares
	5.1.5 Parallel Multiply with Add
	5.1.6 Multiply by One with Optional Accumulate
	5.1.7 Parallel Multiply by One with Optional Accumulate

	5.2 Multifunction Accumulator Instructions
	5.2.1 Parallel Add with Shift
	5.2.2 Add with Shift
	5.2.3 Conditional Operation - Maximum
	5.2.4 Conditional Operation - Minimum
	5.2.5 Conditional Operation - Absolute Value Maximum
	5.2.6 Conditional Operation - Absolute Value Minimum
	5.2.7 Bitwise Accumulator Move
	5.2.8 Parallel Bitwise Accumulator Move
	5.2.9 Bitwise Complement
	5.2.10 Parallel Bitwise Complement
	5.2.11 AccumNegative Accumulator Move
	5.2.12 Parallel Negative Accumulator Move
	5.2.13 Absolute Value Accumulator Move
	5.2.14 Parallel Absolute Value Accumulator Move
	5.2.15 Bitwise OR
	5.2.16 Parallel Bitwise OR
	5.2.17 Bitwise Exclusive OR
	5.2.18 Parallel Bitwise Exclusive OR
	5.2.19 Bitwise AND
	5.2.20 Parallel Bitwise AND
	5.2.21 Bitwise Zero
	5.2.22 Parallel Bitwise Zero
	5.2.23 Bitwise Shift Left by One
	5.2.24 Parallel Bitwise Shift Left by One
	5.2.25 Bitwise Shift Left by Four
	5.2.26 Parallel Bitwise Shift Left by Four
	5.2.27 Bitwise Shift Left by Eight
	5.2.28 Parallel Bitwise Shift Left by Eight
	5.2.29 Bitwise Shift Right by One
	5.2.30 Parallel Bitwise Shift Right by One
	5.2.31 Bitwise Test
	5.2.32 Parallel Bitwise Test
	5.2.33 Bitwise Compare
	5.2.34 Parallel Bitwise Compare
	5.2.35 Bitwise Absolute Value Compare
	5.2.36 Parallel Bitwise Absolute Value Compare

	Appendix A Glossary
	Appendix B List of Instructions by Category and Flag Reference
	Revision History

