DERCRIPTION

The WM8978 is a low power, high quality stereo CODEC designed for portable applications such as multimedia phone, digital still camera or digital camcorder.

The device integrates preamps for stereo differential mics, and includes drivers for speakers, headphone and differential or stereo line output. External component requirements are reduced as no separate microphone or headphone amplifiers are required.

Advanced on-chip digital signal processing includes a 5-band equaliser, a mixed signal Automatic Level Control for the microphone or line input through the ADC as well as a purely digital limiter function for record or playback. Additional digital filtering options are available in the ADC path, to cater for application filtering such as ‘wind noise reduction’.

The WM8978 digital audio interface can operate as a master or a slave. An internal PLL can generate all required audio clocks for the CODEC from common reference clock frequencies, such as 12MHz and 13MHz.

The WM8978 operates at analogue supply voltages from 2.5V to 3.3V, although the digital core can operate at voltages down to 1.71V to save power. The speaker outputs and OUT3/4 line outputs can run from a 5V supply if increased output power is required. Individual sections of the chip can also be powered down under software control.

FEATURES

Stereo CODEC:
- DAC SNR 98dB, THD -84dB (‘A’ weighted @ 48kHz)
- ADC SNR 95dB, THD -84dB (‘A’ weighted @ 48kHz)
- On-chip Headphone Driver with ‘capless’ option
 - 40mW per channel into 16Ω / 3.3V SPKVDD
- 1W output power into 8Ω BTL speaker / 5V SPKVDD
 - Capable of driving piezo speakers
 - Stereo speaker drive configuration

Mic Preamps:
- Stereo Differential or mono microphone Interfaces
 - Programmable preamp gain
 - Psuedo differential inputs with common mode rejection
 - Programmable ALC / Noise Gate in ADC path
- Low-noise bias supplied for electret microphones

Other Features:
- Enhanced 3-D function for improved stereo separation
- Digital playback limiter
- 5-band Equaliser (record or playback)
- Programmable ADC High Pass Filter (wind noise reduction)
- Programmable ADC Notch Filter
- Aux inputs for stereo analogue input signals or ‘beep’
- On-chip PLL supporting 12, 13, 19.2MHz and other clocks
- Support for 8, 11.025, 12, 16, 22.05, 24, 32, 44.1 and 48kHz sample rates
- Low power, low voltage
 - 2.5V to 3.6V (digital: 1.71V to 3.6V)
- 5x5mm 32-lead QFN package

APPLICATIONS

- Stereo Camcorder or DSC
- Multimedia Phone
TABLE OF CONTENTS

DESCRIPTION ... 1
BLOCK DIAGRAM .. 1
FEATURES .. 1
APPLICATIONS .. 1
TABLE OF CONTENTS .. 2
PIN CONFIGURATION ... 4
ORDERING INFORMATION ... 4
PIN DESCRIPTION ... 5
ABSOLUTE MAXIMUM RATINGS ... 6
RECOMMENDED OPERATING CONDITIONS .. 6
ELECTRICAL CHARACTERISTICS .. 7
TERMINOLOGY ... 10
SPEAKER OUTPUT THD VERSUS POWER ... 11
POWER CONSUMPTION ... 12
AUDIO PATHS OVERVIEW ... 14
SIGNAL TIMING REQUIREMENTS ... 15
SYSTEM CLOCK TIMING .. 15
AUDIO INTERFACE TIMING – MASTER MODE ... 15
AUDIO INTERFACE TIMING – SLAVE MODE ... 16
CONTROL INTERFACE TIMING – 3-WIRE MODE .. 17
CONTROL INTERFACE TIMING – 2-WIRE MODE .. 18
INTERNAL POWER ON RESET CIRCUIT ... 19
DEVICE DESCRIPTION .. 21
INTRODUCTION ... 21
INPUT SIGNAL PATH .. 23
ANALOGUE TO DIGITAL CONVERTER (ADC) ... 30
INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC) .. 36
OUTPUT SIGNAL PATH ... 47
3D STEREO ENHANCEMENT ... 54
ANALOGUE OUTPUTS ... 54
DIGITAL AUDIO INTERFACES ... 70
AUDIO SAMPLE RATES ... 75
MASTER CLOCK AND PHASE LOCKED LOOP (PLL) ... 75
LOOPBACK .. 77
COMPANDING .. 77
GENERAL PURPOSE INPUT/OUTPUT ... 79
OUTPUT SWITCHING (JACK DETECT) ... 80
CONTROL INTERFACE .. 82
RESETTING THE CHIP .. 83
POWER SUPPLIES ... 83
RECOMMENDED POWER UP/DOWN SEQUENCE ... 83
POWER MANAGEMENT ... 88
REGISTER MAP .. 89
REGISTER BITS BY ADDRESS .. 91
DIGITAL FILTER CHARACTERISTICS .. 108
TERMINOLOGY .. 108
DAC FILTER RESPONSES ... 109
ADC FILTER RESPONSES ... 109
HIGHPASS FILTER ... 110
PIN CONFIGURATION

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDER CODE</th>
<th>TEMPERATURE RANGE</th>
<th>PACKAGE</th>
<th>MOISTURE SENSITIVITY LEVEL</th>
<th>PEAK SOLDERING TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM8978CGEFL/V</td>
<td>-40°C to +100°C</td>
<td>32-lead QFN (5 x 5 mm) (Pb-free)</td>
<td>MSL3</td>
<td>260°C</td>
</tr>
<tr>
<td>WM8978CGEFL/RV</td>
<td>-40°C to +100°C</td>
<td>32-lead QFN (5 x 5 mm) (Pb-free, tape and reel)</td>
<td>MSL3</td>
<td>260°C</td>
</tr>
</tbody>
</table>

Note:
Reel quantity = 3,500
PIN DESCRIPTION

<table>
<thead>
<tr>
<th>PIN</th>
<th>NAME</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LIP</td>
<td>Analogue input</td>
<td>Left Mic Pre-amp positive input</td>
</tr>
<tr>
<td>2</td>
<td>LIN</td>
<td>Analogue input</td>
<td>Left Mic Pre-amp negative input</td>
</tr>
<tr>
<td>3</td>
<td>L2/GPIO2</td>
<td>Analogue input</td>
<td>Left channel line input/secondary mic pre-amp positive input/GPIO2 pin</td>
</tr>
<tr>
<td>4</td>
<td>RIP</td>
<td>Analogue input</td>
<td>Right Mic Pre-amp positive input</td>
</tr>
<tr>
<td>5</td>
<td>RIN</td>
<td>Analogue input</td>
<td>Right Mic Pre-amp negative input</td>
</tr>
<tr>
<td>6</td>
<td>R2/GPIO3</td>
<td>Analogue input</td>
<td>Right channel line input/secondary mic pre-amp positive input/GPIO3 pin</td>
</tr>
<tr>
<td>7</td>
<td>LRC</td>
<td>Digital Input / Output</td>
<td>DAC and ADC Sample Rate Clock</td>
</tr>
<tr>
<td>8</td>
<td>BCLK</td>
<td>Digital Input / Output</td>
<td>Digital Audio Port Clock</td>
</tr>
<tr>
<td>9</td>
<td>ADCDAT</td>
<td>Digital Output</td>
<td>ADC Digital Audio Data Output</td>
</tr>
<tr>
<td>10</td>
<td>DACDAT</td>
<td>Digital Input</td>
<td>DAC Digital Audio Data Input</td>
</tr>
<tr>
<td>11</td>
<td>MCLK</td>
<td>Digital Input</td>
<td>Master Clock Input</td>
</tr>
<tr>
<td>12</td>
<td>DGNd</td>
<td>Supply</td>
<td>Digital ground</td>
</tr>
<tr>
<td>13</td>
<td>DCVDD</td>
<td>Supply</td>
<td>Digital core logic supply</td>
</tr>
<tr>
<td>14</td>
<td>DBVDD</td>
<td>Supply</td>
<td>Digital buffer (I/O) supply</td>
</tr>
<tr>
<td>15</td>
<td>CSB/GPIO1</td>
<td>Digital Input / Output</td>
<td>3-Wire Control Interface Chip Select / GPIO1 pin</td>
</tr>
<tr>
<td>16</td>
<td>SCLK</td>
<td>Digital Input</td>
<td>3-Wire Control Interface Clock Input</td>
</tr>
<tr>
<td>17</td>
<td>SDIN</td>
<td>Digital Input / Output</td>
<td>3-Wire Control Interface Data Input / 2-Wire Control Interface Data Input</td>
</tr>
<tr>
<td>18</td>
<td>MODE</td>
<td>Digital Input</td>
<td>Control Interface Selection</td>
</tr>
<tr>
<td>19</td>
<td>AUXL</td>
<td>Analogue input</td>
<td>Left Auxiliary input</td>
</tr>
<tr>
<td>20</td>
<td>AUXR</td>
<td>Analogue input</td>
<td>Right Auxiliary input</td>
</tr>
<tr>
<td>21</td>
<td>OUT4</td>
<td>Analogue Output</td>
<td>Buffered midrail Headphone pseudo-ground, or Right line output or MONO mix output</td>
</tr>
<tr>
<td>22</td>
<td>OUT3</td>
<td>Analogue Output</td>
<td>Buffered midrail Headphone pseudo-ground, or Left line output</td>
</tr>
<tr>
<td>23</td>
<td>ROUT2</td>
<td>Analogue Output</td>
<td>Second right output, or BTL speaker driver positive output</td>
</tr>
<tr>
<td>24</td>
<td>SPKGND</td>
<td>Supply</td>
<td>Speaker ground (feeds speaker amp and OUT3/OUT4)</td>
</tr>
<tr>
<td>25</td>
<td>LOUT2</td>
<td>Analogue Output</td>
<td>Second left output, or BTL speaker driver negative output</td>
</tr>
<tr>
<td>26</td>
<td>SPKVD</td>
<td>Supply</td>
<td>Speaker supply (feed speaker amp only)</td>
</tr>
<tr>
<td>27</td>
<td>VMID</td>
<td>Reference</td>
<td>Decoupling for ADC and DAC reference voltage</td>
</tr>
<tr>
<td>28</td>
<td>AGND</td>
<td>Supply</td>
<td>Analogue ground (feeds ADC and DAC)</td>
</tr>
<tr>
<td>29</td>
<td>ROUT1</td>
<td>Analogue Output</td>
<td>Headphone or Line Output Right</td>
</tr>
<tr>
<td>30</td>
<td>LOUT1</td>
<td>Analogue Output</td>
<td>Headphone or Line Output Left</td>
</tr>
<tr>
<td>31</td>
<td>AVDD</td>
<td>Supply</td>
<td>Analogue supply (feeds ADC and DAC)</td>
</tr>
<tr>
<td>32</td>
<td>MICBIAS</td>
<td>Analogue Output</td>
<td>Microphone Bias</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.
MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.
MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

The Moisture Sensitivity Level for each package type is specified in Ordering Information.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBVDD, DCVDD, AVDD supply voltages</td>
<td>-0.3V</td>
<td>+4.5V</td>
</tr>
<tr>
<td>SPKVDD supply voltage</td>
<td>-0.3V</td>
<td>+7V</td>
</tr>
<tr>
<td>Voltage range digital inputs</td>
<td>DGND -0.3V</td>
<td>DVDD +0.3V</td>
</tr>
<tr>
<td>Voltage range analogue inputs</td>
<td>AGND -0.3V</td>
<td>AVDD +0.3V</td>
</tr>
<tr>
<td>Operating temperature range, T<sub>a</sub></td>
<td>-40°C</td>
<td>+100°C</td>
</tr>
<tr>
<td>Storage temperature after soldering</td>
<td>-65°C</td>
<td>+150°C</td>
</tr>
</tbody>
</table>

Notes:
1. Analogue and digital grounds must always be within 0.3V of each other.
2. All digital and analogue supplies are completely independent from each other.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital supply range (Core)</td>
<td>DCVDD</td>
<td></td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Digital supply range (Buffer)</td>
<td>DBVDD</td>
<td></td>
<td>1.71</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Analogue core supply range</td>
<td>AVDD</td>
<td></td>
<td>2.5</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Analogue output supply range</td>
<td>SPKVDD</td>
<td></td>
<td>2.5</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>DGND, AGND, SPKGND</td>
<td></td>
<td>0</td>
<td></td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. When using the PLL, DCVDD must not be less than 1.9V.
2. DBVDD must be greater than or equal to DCVDD.
3. Analogue supplies have to be ≥ to digital supplies.
4. In non-boosted mode, SPKVDD should = AVDD, if boosted SPKVDD should be ≥ 1.5x AVDD.
ELECTRICAL CHARACTERISTICS

Test Conditions
DCVDD=1.8V, AVDD=AVDD=SPKVDD= 3.3V, TA = +25°C, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphone Preamp Inputs (LIP, LIN, RIP, RIN, L2, R2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-scale Input Signal Level – note this changes in proportion to AVDD (Note 1)</td>
<td>VINFS</td>
<td>PGABOOST = 0dB, INPPGAVOL = 0dB</td>
<td>1.0</td>
<td>0</td>
<td></td>
<td>Vrms, dBV</td>
</tr>
<tr>
<td>Mic PGA equivalent input noise At 35.25dB gain</td>
<td></td>
<td>0 to 20kHz</td>
<td>150</td>
<td></td>
<td></td>
<td>μV</td>
</tr>
<tr>
<td>Input resistance</td>
<td>RMICIN</td>
<td>Gain set to 35.25dB</td>
<td>1.6</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>RMICIN</td>
<td>Gain set to 0dB</td>
<td>47</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>RMICIN</td>
<td>Gain set to -12dB</td>
<td>75</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>RMICP</td>
<td>L/RIP2INPPGA = 1</td>
<td>94</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>CMICIN</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>MIC Programmable Gain Amplifier (PGA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Programmable Gain</td>
<td></td>
<td></td>
<td>35.25</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Minimum Programmable Gain</td>
<td></td>
<td></td>
<td>-12</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Programmable Gain Step Size</td>
<td></td>
<td></td>
<td>Guaranteed monotonic</td>
<td>0.75</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Mute Attenuation</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Selectable Input Gain Boost (0/+20dB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Boost on PGA input</td>
<td></td>
<td>Boost disabled</td>
<td>0</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boost enabled</td>
<td>20</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Maximum Gain from AUXL/R or L/R2 input to boost/mixer</td>
<td></td>
<td></td>
<td>+6</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Minimum Gain from AUXL/R or L/R2 input to boost/mixer</td>
<td></td>
<td></td>
<td>-12</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain step size to boost/mixer</td>
<td></td>
<td></td>
<td>Guaranteed monotonic</td>
<td>3</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Auxiliary Analogue Inputs (AUXL, AUXR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-scale Input Signal Level (0dB) – note this changes in proportion to AVDD</td>
<td>VINFS</td>
<td>AVDD/3.3</td>
<td>0</td>
<td></td>
<td></td>
<td>Vrms, dBV</td>
</tr>
<tr>
<td>Input Resistance (Note 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rauxinmin</td>
<td>Left Input boost and mixer enabled, at max gain</td>
<td>4.3</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>Rauxintyp</td>
<td>Left Input boost and mixer enabled, at 0dB gain</td>
<td>8.6</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>Rauxinmax</td>
<td>Left Input boost and mixer enabled, at min gain</td>
<td>39.1</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>Rauxinnmin</td>
<td>Right Input boost, mixer and beep enabled, at max gain</td>
<td>3</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>Rauxinnyp</td>
<td>Right Input boost, mixer and beep enabled, at 0dB gain</td>
<td>6</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>Rauxinnmax</td>
<td>Right Input boost, mixer and beep enabled, at min gain</td>
<td>29</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>CMICIN</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>
Test Conditions

DCVDD=1.8V, AVDD=DBVDD=SPKVDD=3.3V, $T_a = +25^\circ$C, 1kHz signal, $f_s = 48$kHz, 24-bit audio data unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Level Control (ALC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Record Level</td>
<td></td>
<td></td>
<td>-22.5</td>
<td>-1.5</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Programmable gain</td>
<td></td>
<td></td>
<td>-12</td>
<td>35.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Hold Time (Note 3,5)</td>
<td>t_{HOLD}</td>
<td>MCLK = 12.288MHz (Note 3)</td>
<td>0, 2.67, 5.33, 10.67, …, 43691</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(time doubles with each step)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Ramp-Up (Decay) Time (Note 4,5)</td>
<td>t_{DCY}</td>
<td>ALCMODE=0 (ALC), MCLK=12.288MHz (Note 3)</td>
<td>3.3, 6.6, 13.1, …, 3360</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(time doubles with each step)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALCMODE=1 (limiter), MCLK=12.288MHz (Note 3)</td>
<td>0.73, 1.45, 2.91, …, 744</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(time doubles with each step)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Ramp-Down (Attack) Time (Note 4,5)</td>
<td>t_{ATK}</td>
<td>ALCMODE=0 (ALC), MCLK=12.288MHz (Note 3)</td>
<td>0.83, 1.66, 3.33, …, 852</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(time doubles with each step)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALCMODE=1 (limiter), MCLK=12.288MHz (Note 3)</td>
<td>0.18, 0.36, 0.73, …, 186</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(time doubles with each step)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mute Attenuation</td>
<td></td>
<td></td>
<td>120</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

Analogue to Digital Converter (ADC)

	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Signal to Noise Ratio (Note 6)	SNR	A-weighted, 0dB gain	85	95		dB
Total Harmonic Distortion (Note 7)	THD	-3dBFS input	-84	-74		dB
Channel Separation (Note 9)		1kHz input signal	110			dB

Digital to Analogue Converter (DAC) to Line-Out (LOUT1, ROUT1 with 10kΩ / 50pF load)

	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Full-scale output	PGA gains set to 0dB, OUT34BOOST=0	AVDD/3.3	V rms			
	PGA gains set to 0dB, OUT34BOOST=1	1.5x (AVDD/3.3)				
Signal to Noise Ratio (Note 6)	SNR	A-weighted	90	98		dB
Total Harmonic Distortion (Note 7)	THD	$R \ell = 10k\Omega$ full-scale signal	-84	-76		dB
Channel Separation (Note 9)		1kHz signal	110			dB

Output Mixers (LMX1, RMX1)

	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Maximum PGA gain into mixer			+6		dB	
Minimum PGA gain into mixer			-15		dB	
PGA gain step into mixer	Guaranteed monotonic		3		dB	

Analogue Outputs (LOUT1, ROUT1, LOUT2, ROUT2)

	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Maximum Programmable Gain			+6		dB	
Minimum Programmable Gain			-57		dB	
Programmable Gain step size	Guaranteed monotonic		1		dB	
Mute attenuation	1kHz, full scale signal		85		dB	

Headphone Output (LOUT1, ROUT1 with 32Ω load)

	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Signal to Noise Ratio	SNR	A-weighted	AVDD/3.3	V rms		
Total Harmonic Distortion	THD	$R \ell = 16\Omega$, $P_o=20$mW AVDD=3.3V	0.003		%	
			-92		dB	
		$R \ell = 32 \Omega$, $P_o=20$mW AVDD=3.3V	0.008		%	
			-82		dB	
Test Conditions

DCVDD=1.8V, AVDD=DBVDD=SPKVDD=3.3V, T_A = +25°C, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker Output (LOUT2, ROUT2 with 8Ω bridge tied load, INVROUT2=1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full scale output voltage, 0dB gain. (Note 9)</td>
<td></td>
<td>SPKBOOST=0</td>
<td></td>
<td></td>
<td></td>
<td>Vrms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPKBOOST=1</td>
<td></td>
<td></td>
<td></td>
<td>(SPKVDD/3.3)*1.5</td>
</tr>
<tr>
<td>Output Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>THD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0 =200mW, R_L = 8Ω, SPKVDD=3.3V</td>
<td>0.04</td>
<td>-68</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0 =320mW, R_L = 8Ω, SPKVDD=3.3V</td>
<td>1.0</td>
<td>-40</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0 =500mW, R_L = 8Ω, SPKVDD=5V</td>
<td>0.02</td>
<td>-74</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0 =860mW, R_L = 8Ω, SPKVDD=5V</td>
<td>1.0</td>
<td>-40</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Signal to Noise Ratio</td>
<td>SNR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPKVDD=3.3, R_L = 8Ω</td>
<td>90</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPKVDD=5V, R_L = 8Ω</td>
<td>90</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(50Hz-22kHz)</td>
<td></td>
<td>R_L = 8Ω BTL</td>
<td>80</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_L = 8Ω BTL</td>
<td>69</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>OUT3/OUT4 Outputs (with 10kΩ / 50pF load)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-scale output voltage, 0dB gain (Note 10)</td>
<td></td>
<td>OUT3BOOST=0/OUT4BOOST=0</td>
<td>SPKVDD/3.3</td>
<td>Vrms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OUT3BOOST=1/OUT4BOOST=1</td>
<td>(SPKVDD/3.3)*1.5</td>
<td>Vrms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal to Noise Ratio (Note 6)</td>
<td>SNR</td>
<td>A-weighted</td>
<td>98</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>THD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>(Note 7)</td>
<td></td>
<td>R_L = 10kΩ full-scale signal</td>
<td>-84</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Channel Separation (Note 8)</td>
<td>PSRR</td>
<td>1kHz signal</td>
<td>100</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(50Hz-22kHz)</td>
<td></td>
<td>R_L = 10kΩ SPKVDD=5V (boost)</td>
<td>56</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Microphone Bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias Voltage</td>
<td>V_MICBAS</td>
<td>MBVSEL=0</td>
<td>0.9*AVDD</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MBVSEL=1</td>
<td>0.65*AVDD</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Bias Current Source</td>
<td>I_MICBAS</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td></td>
<td></td>
<td>1K to 20kHz</td>
<td>15</td>
<td></td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>Digital Input / Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input HIGH Level</td>
<td>V_HI</td>
<td>0.7*DBVDD</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input LOW Level</td>
<td>V_L</td>
<td>0.3*DBVDD</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output HIGH Level</td>
<td>V_OH</td>
<td>I_OH=1mA</td>
<td>0.9*DBVDD</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output LOW Level</td>
<td>V_OH</td>
<td>I_OH=1mA</td>
<td>0.1xDBVDD</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input capacitance</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Input leakage</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>pA</td>
</tr>
</tbody>
</table>
TERMINOLOGY

1. Input level to RIP and LIP is limited to a maximum of -3dB or THD+N performance will be reduced.
2. Note when BEEP path is not enabled then AUXL and AUXR have the same input impedances.
3. Hold Time is the length of time between a signal detected being too quiet and beginning to ramp up the gain. It does not apply to ramping down the gain when the signal is too loud, which happens without a delay.
4. Ramp-up and Ramp-Down times are defined as the time it takes for the PGA to sweep across 90% of its gain range.
5. All hold, ramp-up and ramp-down times scale proportionally with MCLK.
6. Signal-to-noise ratio (dB) – SNR is a measure of the difference in level between the full scale output and the output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
7. THD+N (dB) – THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.
8. Channel Separation (dB) – Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Measured by applying a full scale signal to one channel input and measuring the level of signal apparent at the other channel output.
9. The maximum output voltage can be limited by the speaker power supply. If OUT3BOOST, OUT4BOOST or SPKBOOST is set then SPKVDD should be 1.5xAVDD to prevent clipping taking place in the output stage (when PGA gains are set to 0dB).
SPEAKER OUTPUT THD VERSUS POWER

WM8978 LAYOUT2 to 8R BTL THD+NLxP0

WM8978 LAYOUT2 to 8R BTL THD+NLxP0
POWER CONSUMPTION

Typical current consumption for various scenarios is shown below.

<table>
<thead>
<tr>
<th>MODE</th>
<th>AVDD (3.0V) (mA)</th>
<th>DCVDD (1.8V) (mA)</th>
<th>DBVDD (3.0V) (mA)</th>
<th>TOTAL POWER (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>0.04</td>
<td>0.0008</td>
<td><0.0001</td>
<td>0.12</td>
</tr>
<tr>
<td>Sleep (VREF maintained, no clocks)</td>
<td>0.04</td>
<td>0.0008</td>
<td><0.0001</td>
<td>0.12</td>
</tr>
<tr>
<td>Stereo Record (8kHz)</td>
<td>4.1</td>
<td>1.0</td>
<td>0.001</td>
<td>14.1</td>
</tr>
<tr>
<td>Stereo 16Ω HP Playback (44.1kHz, quiescent)</td>
<td>3.3</td>
<td>6.2</td>
<td>0.004</td>
<td>21.1</td>
</tr>
<tr>
<td>Stereo 16Ω HP Playback (44.1kHz, white noise)</td>
<td>5.4</td>
<td>7.3</td>
<td>0.004</td>
<td>29.4</td>
</tr>
<tr>
<td>Stereo 16Ω HP Playback (44.1kHz, sine wave)</td>
<td>18</td>
<td>6.7</td>
<td>0.004</td>
<td>66.1</td>
</tr>
</tbody>
</table>

Notes:
1. DBVDD Current will increase with greater loading on digital I/O pins.
2. 5 Band EQ is enabled.
3. AVDD standby current will fall to nearer 15uA when thermal shutdown sensor is disabled.

Table 1 Power Consumption

ESTIMATING SUPPLY CURRENT

When either the DAC or ADC is enabled approximately 7mA will be drawn from DCVDD when DCVDD=1.8V and fs=48kHz. When the PLL is enabled approximately 1.5mA additional current will be drawn from DCVDD.

As a general rule, digital supply currents will scale in proportion to sample rates. Supply current for analogue and digital blocks will also be lower at lower supply voltages.

Power consumed by the output drivers will depend greatly on the signal characteristics. A quiet signal, or a signal with long periods of silence will consume less power than a signal which is continuously loud.

Estimated supply current for the analogue blocks is shown in Table 2. Note that power dissipated in the load is not shown.
<table>
<thead>
<tr>
<th>REGISTER BIT</th>
<th>AVDD CURRENT (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AVDD=3.3V</td>
</tr>
<tr>
<td>BUFDCOPEN</td>
<td>0.1</td>
</tr>
<tr>
<td>OUT4MIXEN</td>
<td>0.2</td>
</tr>
<tr>
<td>OUT3MIXEN</td>
<td>0.2</td>
</tr>
<tr>
<td>PLLRN</td>
<td>1.2 (with clocks applied)</td>
</tr>
<tr>
<td>MICBEN</td>
<td>0.5</td>
</tr>
<tr>
<td>BIASEN</td>
<td>0.3</td>
</tr>
<tr>
<td>BUFIOEN</td>
<td>0.1</td>
</tr>
<tr>
<td>VMIDSEL</td>
<td>5KΩ = >0.3, less than 0.1 for 75KΩ 300KΩ settings</td>
</tr>
<tr>
<td>ROUT1EN</td>
<td>0.4</td>
</tr>
<tr>
<td>LOUT1EN</td>
<td>0.4</td>
</tr>
<tr>
<td>BOOSTENR</td>
<td>0.2</td>
</tr>
<tr>
<td>BOOSTENL</td>
<td>0.2</td>
</tr>
<tr>
<td>INPPGAENR</td>
<td>0.2</td>
</tr>
<tr>
<td>INPPGAENL</td>
<td>0.2</td>
</tr>
<tr>
<td>ADCENR</td>
<td>2.6 (x64, ADCOSR=0)</td>
</tr>
<tr>
<td></td>
<td>4.9 (x128, ADCOSR=1)</td>
</tr>
<tr>
<td>ADCENL</td>
<td>2.6 (x64, ADCOSR=0)</td>
</tr>
<tr>
<td></td>
<td>4.9 (x128, ADCOSR=1)</td>
</tr>
<tr>
<td>OUT4EN</td>
<td>0.2</td>
</tr>
<tr>
<td>OUT3EN</td>
<td>0.2</td>
</tr>
<tr>
<td>LOUT2EN</td>
<td>1mA from SPKVDD + 0.2mA from AVDD in 5V mode</td>
</tr>
<tr>
<td>ROUT2EN</td>
<td>1mA from SPKVDD + 0.2mA from AVDD in 5V mode</td>
</tr>
<tr>
<td>RMIXEN</td>
<td>0.2</td>
</tr>
<tr>
<td>LMIXEN</td>
<td>0.2</td>
</tr>
<tr>
<td>DACENR</td>
<td>1.8 (x64, DACOSR=0)</td>
</tr>
<tr>
<td></td>
<td>1.9 (x128, DACOSR=1)</td>
</tr>
<tr>
<td>DACENL</td>
<td>1.8 (x64, DACOSR=0)</td>
</tr>
<tr>
<td></td>
<td>1.9 (x128, DACOSR=1)</td>
</tr>
</tbody>
</table>

Table 2 AVDD Supply Current (AVDD=3.3V)
SIGNAL TIMING REQUIREMENTS

SYSTEM CLOCK TIMING

![System Clock Timing Diagram]

Figure 1 System Clock Timing Requirements

Test Conditions
DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T_a = +25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Clock Timing Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCLK cycle time</td>
<td>T_{MCLKY}</td>
<td>MCLK=SYSCLK (=256fs)</td>
<td>81.38</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCLK input to PLL note 1</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>MCLK duty cycle</td>
<td>T_{MCLKDS}</td>
<td></td>
<td>60:40</td>
<td>40:60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1:
PLL pre-scaling and PLL N and K values should be set appropriately so that SYSCLK is no greater than 12.288MHz.

AUDIO INTERFACE TIMING – MASTER MODE

![Audio Interface Timing Diagram]

Figure 2 Digital Audio Data Timing – Master Mode (see Control Interface)
Test Conditions
DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T\textsubscript{a}=+25°C, Master Mode, fs=48kHz, MCLK=256fs, 24-bit data, unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRC propagation delay from BCLK falling edge</td>
<td>t\textsubscript{DL}</td>
<td>10 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADCDAT propagation delay from BCLK falling edge</td>
<td>t\textsubscript{DDA}</td>
<td>10 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DACDAT setup time to BCLK rising edge</td>
<td>t\textsubscript{SET}</td>
<td>10 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DACDAT hold time from BCLK rising edge</td>
<td>t\textsubscript{HOLD}</td>
<td>10 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AUDIO INTERFACE TIMING – SLAVE MODE

![Digital Audio Data Timing – Slave Mode](image)

Test Conditions
DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T\textsubscript{a}=+25°C, Slave Mode, fs=48kHz, MCLK= 256fs, 24-bit data, unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLK cycle time</td>
<td>t\textsubscript{BCY}</td>
<td>50 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCLK pulse width high</td>
<td>t\textsubscript{BCH}</td>
<td>20 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCLK pulse width low</td>
<td>t\textsubscript{BCL}</td>
<td>20 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRC set-up time to BCLK rising edge</td>
<td>t\textsubscript{RSU}</td>
<td>10 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRC hold time from BCLK rising edge</td>
<td>t\textsubscript{RH}</td>
<td>10 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DACDAT hold time from BCLK rising edge</td>
<td>t\textsubscript{H}</td>
<td>10 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DACDAT set-up time to BCLK rising edge</td>
<td>t\textsubscript{SU}</td>
<td>10 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADCDAT propagation delay from BCLK falling edge</td>
<td>t\textsubscript{DD}</td>
<td>10 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
BCLK period should always be greater than or equal to MCLK period.
CONTROL INTERFACE TIMING – 3-WIRE MODE

Test Conditions
DCVDD = 1.8V, DBVDD = AVDD = SPKVDD = 3.3V, DGND = AGND = SPKGND = 0V, TA=+25°C, Slave Mode, fs=48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Register Input Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLK rising edge to CSB rising edge</td>
<td>tSCS</td>
<td>80</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCLK pulse cycle time</td>
<td>tSCY</td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCLK pulse width low</td>
<td>tSCL</td>
<td>80</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCLK pulse width high</td>
<td>tSCH</td>
<td>80</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SDIN to SCLK set-up time</td>
<td>tDSU</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCLK to SDIN hold time</td>
<td>tDHD</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>CSB pulse width low</td>
<td>tCSL</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>CSB pulse width high</td>
<td>tCSH</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>CSB rising to SCLK rising</td>
<td>tCSS</td>
<td>40</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Pulse width of spikes that will be suppressed</td>
<td>tPS</td>
<td>0</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
CONTROL INTERFACE TIMING – 2-WIRE MODE

![Control Interface Timing Diagram](image)

Figure 5 Control Interface Timing – 2-Wire Serial Control Mode

Test Conditions

DCVDD=1.8V, DBVDD=AVDD=SPKVDD=3.3V, DGND=AGND=SPKGND=0V, T_A=+25°C, Slave Mode, fs=48kHz, MCLK = 256fs, 24-bit data, unless otherwise stated.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Register Input Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLK Frequency</td>
<td></td>
<td>0</td>
<td></td>
<td>526</td>
<td>kHz</td>
</tr>
<tr>
<td>SCLK Low Pulse-Width</td>
<td>t1</td>
<td>1.3</td>
<td></td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>SCLK High Pulse-Width</td>
<td>t2</td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hold Time (Start Condition)</td>
<td>t3</td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup Time (Start Condition)</td>
<td>t4</td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Setup Time</td>
<td>t5</td>
<td>100</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDIN, SCLK Rise Time</td>
<td>t6</td>
<td>300</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDIN, SCLK Fall Time</td>
<td>t7</td>
<td>300</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup Time (Stop Condition)</td>
<td>t8</td>
<td>600</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Hold Time</td>
<td>t9</td>
<td>900</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse width of spikes that will be suppressed</td>
<td>tps</td>
<td>0</td>
<td></td>
<td>5</td>
<td>ns</td>
</tr>
</tbody>
</table>
INTERNAL POWER ON RESET CIRCUIT

The WM8978 includes an internal Power-On-Reset Circuit (POR), as shown in Figure 6, which is used to reset the digital logic into a default state after power up. The POR circuit is powered from AVDD and monitors DVDD. It asserts PORB low if AVDD or DVDD is below a minimum threshold.

Figure 6 Internal Power on Reset Circuit Schematic

Figure 7 shows a typical power-up sequence where AVDD comes up first. When AVDD goes above the minimum threshold, \(V_{\text{pora}} \), there is enough voltage for the circuit to guarantee PORB is asserted low and the chip is held in reset. In this condition, all writes to the control interface are ignored. AVDD will then ramp up to full supply level. Next DVDD rises to \(V_{\text{port.on}} \) and PORB is released high and all registers are in their default state and writes to the control interface may take place.

On power down, where AVDD falls first, PORB is asserted low whenever AVDD drops below the minimum threshold \(V_{\text{pora.off}} \).

Figure 7 Typical Power up Sequence where AVDD is Powered before DVDD
Figure 8 shows a typical power-up sequence where DVDD comes up first. First it is assumed that DVDD is already up to specified operating voltage. When AVDD goes above the minimum threshold, \(V_{\text{pora}} \), there is enough voltage for the circuit to guarantee PORB is asserted low and the chip is held in reset. In this condition, all writes to the control interface are ignored. When AVDD rises to \(V_{\text{pora.on}} \), PORB is released high and all registers are in their default state and writes to the control interface may take place.

On power down, where DVDD falls first, PORB is asserted low whenever DVDD drops below the minimum threshold \(V_{\text{pord.off}} \).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{pora}})</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{pora.on}})</td>
<td>0.9</td>
<td>1.2</td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{pora.off}})</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{pord.on}})</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{pord.off}})</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 3 Typical POR operation (typical simulated values)

Notes:

1. If AVDD and DVDD suffer a brown-out (i.e. drop below the minimum recommended operating level but do not go below \(V_{\text{pora.off}} \) or \(V_{\text{pord.off}} \)) then the chip will not reset and will resume normal operation when the voltage is back to the recommended level again.

2. The chip will enter reset at power down when AVDD or DVDD falls below \(V_{\text{pora.off}} \) or \(V_{\text{pord.off}} \). This may be important if the supply is turned on and off frequently by a power management system.

3. The minimum \(t_{\text{por}} \) period is maintained even if DVDD and AVDD have zero rise time. This specification is guaranteed by design rather than test.
DEVICE DESCRIPTION

INTRODUCTION

The WM8978 is a low power audio CODEC combining a high quality stereo audio DAC and ADC, with flexible line and microphone input and output processing. Applications for this device include multimedia phones, stereo digital camcorders, and digital still cameras with either mono or stereo record and playback capability.

FEATURES

The chip offers great flexibility in use, and so can support many different modes of operation as follows:

MICROPHONE INPUTS

Two pairs of stereo microphone inputs are provided, allowing a pair of stereo microphones to be pseudo-differentially connected, with user defined gain using internal resistors. The provision of the common mode input pin for each stereo input allows for rejection of common mode noise on the microphone inputs (level depends on gain setting chosen). A microphone bias is output from the chip which can be used to bias both microphones. The signal routing can be configured to allow manual adjustment of mic levels, or to allow the ALC loop to control the level of mic signal that is transmitted. Total gain through the microphone paths of up to +55.25dB can be selected.

PGA AND ALC OPERATION

A programmable gain amplifier is provided in the input path to the ADC. This may be used manually or in conjunction with a mixed analogue/digital automatic level control (ALC) which keeps the recording volume constant.

LINE INPUTS (AUXL, AUXR)

The inputs, AUXL and AUXR, can be used as a stereo line input or as an input for warning tones (or ‘beeps’) etc. These inputs can be summed into the record paths, along with the microphone preamp outputs, so allowing for mixing of audio with ‘backing music’ etc as required.

ADC

The stereo ADC uses a 24-bit delta sigma oversampling architecture to deliver optimum performance with low power consumption.

HI-FI DAC

The hi-fi DAC provides high quality audio playback suitable for all portable audio hi-fi type applications, including MP3 players and portable disc players of all types.

OUTPUT MIXERS

Flexible mixing is provided on the outputs of the device. A stereo mixer is provided for the stereo headphone or line outputs, LOUT1/ROUT1, and additional summers on the OUT3/OUT4 outputs allow for an optional differential or stereo line output on these pins. Gain adjustment PGAs are provided for the LOUT1/ROUT1 and LOUT2/ROUT2 outputs, and signal switching is provided to allow for all possible signal combinations. The output buffers can be configured in several ways, allowing support of up to three sets of external transducers; ie stereo headphone, BTL speaker, and BTL earpiece may be connected simultaneously. Thermal implications should be considered before simultaneous full power operation of all outputs is attempted.

Alternatively, if a speaker output is not required, the LOUT2 and ROUT2 pins might be used as a stereo headphone driver, (disable output invert buffer on ROUT2). In that case two sets of headphones might be driven, or the LOUT2 and ROUT2 pins used as a line output driver.
OUT3 and OUT4 can be configured to provide an additional stereo lineout from the output of the DACs, the mixers or the input microphone boost stages. Alternatively OUT4 can be configured as a mono mix of left and right DACs or mixers, or simply a buffered version of the chip midrail reference voltage. OUT3 can also be configured as a buffered VMID output. This voltage may then be used as a headphone 'pseudo ground' allowing removal of the large AC coupling capacitors often used in the output path.

AUDIO INTERFACES

The WM8978 has a standard audio interface, to support the transmission of stereo data to and from the chip. This interface is a 3 wire standard audio interface which supports a number of audio data formats including I2S, DSP/PCM Mode (a burst mode in which LRC sync plus 2 data packed words are transmitted), MSB-First, left justified and MSB-First, right justified, and can operate in master or slave modes.

CONTROL INTERFACES

To allow full software control over all features, the WM8978 offers a choice of 2 or 3 wire control interface. It is fully compatible and an ideal partner for a wide range of industry standard microprocessors, controllers and DSPs.

Selection between the modes is via the MODE pin. In 2 wire mode the address of the device is fixed as 0011010.

CLOCKING SCHEMES

WM8978 offers the normal audio DAC clocking scheme operation, where 256fs MCLK is provided to the DAC and ADC. A PLL is included which may be used to generate these clocks in the event that they are not available from the system controller. This PLL uses an input clock, typically the 12MHz USB or ilink clock, to generate high quality audio clocks. If this PLL is not required for generation of these clocks, it can be reconfigured to generate alternative clocks which may then be output on the GPIO pins and used elsewhere in the system.

POWER CONTROL

The design of the WM8978 has given much attention to power consumption without compromising performance. It operates at very low voltages, and includes the ability to power off any unused parts of the circuitry under software control, and includes standby and power off modes.

OPERATION SCENARIOS

Flexibility in the design of the WM8978 allows for a wide range of operational scenarios, some of which are proposed below:

- **Multimedia phone;** High quality playback to a stereo headset, a mono ear speaker or a loudspeaker is supported, allowing hi-fi playback to be mixed with voice and other analogue inputs while simultaneously transmitting a differential output from the microphone amplifier. A 5-band EQ enables hi-fi playback to be customised to suit the user's preferences and the music style, while programmable filtering allows fixed-frequency noise (e.g. 217Hz) to be reduced in the digital domain.

- **Stereo Camcorder;** The provision of two stereo microphone preamplifiers, allows support for both internal and external microphones. All drivers for speaker, headphone and line output connections are integrated. The selectable ‘application filters’ after the ADC provide for features such as ‘wind noise’ reduction, or mechanical noise reducing filters.

- **Stereo Digital still camera recording;** Support for digital stereo recording is similar to the camcorder case. But additionally if the DSC supports MP3 playback, and perhaps recording, the ability of the ADCs to support full 48ks/s high quality stereo recording increases device flexibility.

- **Mono Digital still camera;** Full control over device functionality, and power control is provided, allowing for the case of mono DSC recording, when half of the ADC and mic and line functionality may be disabled to save power. In the mono case, the single ADC channel of audio data is sent out over the Left channel of the audio interface.
AUXILIARY ANALOGUE INPUTS
An analogue stereo FM tuner or other auxiliary analogue input can be connected to the Line inputs of WM8978, and the stereo signal listened to via headphones, or recorded, simultaneously if required.

INPUT SIGNAL PATH
The WM8978 has a number of flexible analogue inputs. There are two input channels, Left and Right, each of which consists of an input PGA stage followed by a boost/mix stage which drives into the hi-fi ADC. Each input path has three input pins which can be configured in a variety of ways to accommodate single-ended, differential or dual differential microphones. There are two auxiliary input pins which can be fed into to the input boost/mix stage as well as driving into the output path. A bypass path exists from the output of the boost/mix stage into the output left/right mixers.

MICROPHONE INPUTS
The WM8978 can accommodate a variety of microphone configurations including single ended and differential inputs. The inputs to the left differential input PGA are LIN, LIP and L2. The inputs to the right differential input PGA are RIN, RIP and R2.

In single-ended microphone input configuration the microphone signal should be input to LIN or RIN and the internal NOR gate configured to clamp the non-inverting input of the input PGA to VMID.

In differential mode the larger signal should be input to LIP or RIP and the smaller (e.g. noisy ground connection) should be input to LIN or RIN.

Figure 9 Microphone Input PGA Circuit
The input PGAs are enabled by the IPPGAENL/R register bits.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2 Power Management 2</td>
<td>2</td>
<td>INPPGAENL</td>
<td>0</td>
<td>Left channel input PGA enable 0 = disabled 1 = enabled</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>INPPGAENR</td>
<td>0</td>
<td>Right channel input PGA enable 0 = disabled 1 = enabled</td>
</tr>
</tbody>
</table>

Table 4 Input PGA Enable Register Settings

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R44 Input Control</td>
<td>0</td>
<td>LIP2INPPGA</td>
<td>1</td>
<td>Connect LIP pin to left channel input PGA amplifier positive terminal. 0 = LIP not connected to input PGA 1 = input PGA amplifier positive terminal connected to LIP (constant input impedance)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>LIN2INPPGA</td>
<td>1</td>
<td>Connect LIN pin to left channel input PGA negative terminal. 0=LIN not connected to input PGA 1=LIN connected to input PGA amplifier negative terminal.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>L2_2INPPGA</td>
<td>0</td>
<td>Connect L2 pin to left channel input PGA positive terminal. 0=L2 not connected to input PGA 1=L2 connected to input PGA amplifier positive terminal (constant input impedance).</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>RIP2INPPGA</td>
<td>1</td>
<td>Connect RIP pin to right channel input PGA amplifier positive terminal. 0 = RIP not connected to input PGA 1 = right channel input PGA amplifier positive terminal connected to RIP (constant input impedance).</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>RIN2INPPGA</td>
<td>1</td>
<td>Connect RIN pin to right channel input PGA negative terminal. 0=RIN not connected to input PGA 1=RIN connected to right channel input PGA amplifier negative terminal.</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>R2_2INPPGA</td>
<td>0</td>
<td>Connect R2 pin to right channel input PGA positive terminal. 0=R2 not connected to input PGA 1=R2 connected to input PGA amplifier positive terminal (constant input impedance).</td>
</tr>
</tbody>
</table>

Table 5 Input PGA Control

INPUT PGA VOLUME CONTROLS

The input microphone PGAs have a gain range from -12dB to +35.25dB in 0.75dB steps. The gain from the LIN/RIN input to the PGA output and from the L2/R2 amplifier to the PGA output are always common and controlled by the register bits INPPGAVOLL/R[5:0]. These register bits also affect the LIP pin when LIP2INPPGA=1, the L2 pin when L2_2INPPGA=1, the RIP pin when RIP2INPPGA=1 and the L2 pin when L2_2INPPGA=1.

When the Automatic Level Control (ALC) is enabled the input PGA gains are controlled automatically and the INPPGAVOLL/R bits should not be used.
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R45</td>
<td>5:0</td>
<td>INPPGAVOLL</td>
<td>010000</td>
<td>Left channel input PGA volume control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000000 = -12dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000001 = -11.25db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>010000 = 0dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111111 = 35.25dB</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>INPPGAMUTEL</td>
<td>0</td>
<td>Mute control for left channel input PGA:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=Input PGA not muted, normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=Input PGA muted (and disconnected from the following input BOOST stage).</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>INPPGAZCL</td>
<td>0</td>
<td>Left channel input PGA zero cross enable:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=Update gain when gain register changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=Update gain on 1st zero cross after gain register write.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>INPPGAUPDATE</td>
<td>Not latched</td>
<td>INPPGAVOLL and INPPGAVOLR volume do not update until a 1 is written to INPPGAUPDATE (in reg 45 or 46)</td>
</tr>
<tr>
<td>R46</td>
<td>5:0</td>
<td>INPPGAVOLR</td>
<td>010000</td>
<td>Right channel input PGA volume control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000000 = -12dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000001 = -11.25db</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>010000 = 0dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111111 = +35.25dB</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>INPPGAMUTER</td>
<td>0</td>
<td>Mute control for right channel input PGA:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=Input PGA not muted, normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=Input PGA muted (and disconnected from the following input BOOST stage).</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>INPPGAZCR</td>
<td>0</td>
<td>Right channel input PGA zero cross enable:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=Update gain when gain register changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=Update gain on 1st zero cross after gain register write.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>INPPGAUPDATE</td>
<td>Not latched</td>
<td>INPPGAVOLL and INPPGAVOLR volume do not update until a 1 is written to INPPGAUPDATE (in reg 45 or 46)</td>
</tr>
<tr>
<td>R32</td>
<td>8:7</td>
<td>ALCSEL</td>
<td>00</td>
<td>ALC function select:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00=ALC off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01=ALC right only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10=ALC left only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11=ALC both on</td>
</tr>
</tbody>
</table>

Table 6 Input PGA Volume Control

VOLUME UPDATES

Volume settings will not be applied to the PGAs until a ‘1’ is written to one of the INPPGAUPDATE bits. This is to allow left and right channels to be updated at the same time, as shown in Figure 10.
If the volume is adjusted while the signal is a non-zero value, an audible click can occur as shown in Figure 11.

In order to prevent this click noise, a zero cross function is provided. When enabled, this will cause the PGA volume to update only when a zero crossing occurs, minimising click noise as shown in Figure 12.
Figure 12 Volume Update Using Zero Cross Detection

If there is a long period where no zero-crossing occurs, a timeout circuit in the WM8978 will automatically update the volume. The volume updates will occur between one and two timeout periods, depending on when the INPPGAUPDATE bit is set as shown in Figure 13.

Figure 13 Volume Update after Timeout
AUXILIARY INPUTS

There are two auxiliary inputs, AUXL and AUXR which can be used for a variety of purposes such as stereo line inputs or as a 'beep' input signal to be mixed with the outputs.

The AUXL/R inputs can be used as a line input to the input BOOST stage which has gain adjust of -12dB to +6dB in 3dB steps (plus off). See the INPUT BOOST section for further details.

The AUXL/R inputs can also be mixed into the output channel mixers, with a gain of -15dB to +6dB plus off.

In addition the AUXR input can be summed into the Right speaker output path (ROUT2) with a gain adjust of -15 to +6dB. This allows a 'beep' input to be output on the speaker outputs only without affecting the headphone or lineout signals.

INPUT BOOST

Each of the stereo input PGA stages is followed by an input BOOST circuit. The input BOOST circuit has 3 selectable inputs: the input microphone PGA output, the AUX amplifier output and the L2/R2 input pin (can be used as a line input, bypassing the input PGA). These three inputs can be mixed together and have individual gain boost/adjust as shown in Figure 14.

The Auxilliary amplifier path to the BOOST stages is controlled by the AUXL2BOOSTVOL[2:0] and AUXR2BOOSTVOL[2:0] register bits. When AUXL2BOOSTVOL/AUXR2BOOSTVOL=000 this path is completely disconnected from the BOOST stage. Settings 001 through to 111 control the gain in 3dB steps from -12dB to +6dB.

The L2/R2 path to the BOOST stage is controlled by the LIP2BOOSTVOL/RIP2BOOSTVOL[2:0] register bits. When L2_2BOOSTVOL/R2_2BOOSTVOL=000 the L2/R2 input pin is completely disconnected from the BOOST stage. Settings 001 through to 111 control the gain in 3dB steps from -12dB to +6dB.
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R47</td>
<td>2:0</td>
<td>AUXL2BOOSTVOL</td>
<td>000</td>
<td>Controls the auxiliary amplifier to the left channel input boost stage: 000=Path disabled (disconnected) 001=-12dB gain through boost stage 010=-9dB gain through boost stage … 111=+6dB gain through boost stage</td>
</tr>
<tr>
<td>R48</td>
<td>2:0</td>
<td>AUXR2BOOSTVOL</td>
<td>000</td>
<td>Controls the auxiliary amplifier to the right channel input boost stage: 000=Path disabled (disconnected) 001=-12dB gain through boost stage 010=-9dB gain through boost stage … 111=+6dB gain through boost stage</td>
</tr>
<tr>
<td></td>
<td>6:4</td>
<td>L2_2BOOSTVOL</td>
<td>000</td>
<td>Controls the L2 pin to the left channel input boost stage: 000=Path disabled (disconnected) 001=-12dB gain through boost stage 010=-9dB gain through boost stage … 111=+6dB gain through boost stage</td>
</tr>
<tr>
<td></td>
<td>6:4</td>
<td>R2_2BOOSTVOL</td>
<td>000</td>
<td>Controls the R2 pin to the right channel input boost stage: 000=Path disabled (disconnected) 001=-12dB gain through boost stage 010=-9dB gain through boost stage … 111=+6dB gain through boost stage</td>
</tr>
</tbody>
</table>

Table 8 Input BOOST Stage Control

The BOOST stage is enabled under control of the BOOSTEN register bit.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>4</td>
<td>BOOSTENL</td>
<td>0</td>
<td>Left channel Input BOOST enable 0 = Boost stage OFF 1 = Boost stage ON</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>BOOSTENR</td>
<td>0</td>
<td>Right channel Input BOOST enable 0 = Boost stage OFF 1 = Boost stage ON</td>
</tr>
</tbody>
</table>

Table 9 Input BOOST Enable Control
MICROPHONE BIASING CIRCUIT

The MICBIAS output provides a low noise reference voltage suitable for biasing electret type microphones and the associated external resistor biasing network. Refer to the Applications Information section for recommended external components. The MICBIAS voltage can be altered via the MBVSEL register bit. When MBVSEL=0, MICBIAS=0.9*AVDD and when MBVSEL=1, MICBIAS=0.65*AVDD. The output can be enabled or disabled using the MICBEN control bit.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>4</td>
<td>MICBEN</td>
<td>0</td>
<td>Microphone Bias Enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = OFF (high impedance output)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = ON</td>
</tr>
</tbody>
</table>

Table 10 Microphone Bias Enable Control

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R44</td>
<td>8</td>
<td>MBVSEL</td>
<td>0</td>
<td>Microphone Bias Voltage Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = 0.9 * AVDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = 0.65 * AVDD</td>
</tr>
</tbody>
</table>

Table 11 Microphone Bias Voltage Control

The internal MICBIAS circuitry is shown in Figure 15. Note that the maximum source current capability for MICBIAS is 3mA. The external biasing resistors therefore must be large enough to limit the MICBIAS current to 3mA.

![Figure 15 Microphone Bias Schematic](image)

ANALOGUE TO DIGITAL CONVERTER (ADC)

The WM8978 uses stereo multi-bit, oversampled sigma-delta ADCs. The use of multi-bit feedback and high oversampling rates reduces the effects of jitter and high frequency noise. The ADC Full Scale input level is proportional to AVDD. With a 3.3V supply voltage, the full scale level is 1.0V rms. Any voltage greater than full scale may overload the ADC and cause distortion.

ADC DIGITAL FILTERS

The ADC filters perform true 24 bit signal processing to convert the raw multi-bit oversampled data from the ADC to the correct sampling frequency to be output on the digital audio interface. The digital filter path for each ADC channel is illustrated in Figure 16.
Figure 16 ADC Digital Filter Path

The ADCs are enabled by the ADCENL/R register bit.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>0</td>
<td>ADCENL</td>
<td>0</td>
<td>Enable ADC left channel:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = ADC disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = ADC enabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ADCENR</td>
<td>0</td>
<td>Enable ADC right channel:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = ADC disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = ADC enabled</td>
</tr>
</tbody>
</table>

Table 12 ADC Enable Control

The polarity of the output signal can also be changed under software control using the ADCLPOL/ADCRPOL register bit. The oversampling rate of the ADC can be adjusted using the ADCOSR register bit. With ADCOSR=0 the oversample rate is 64x which gives lowest power operation and when ADCOSR=1 the oversample rate is 128x which gives best performance.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R14</td>
<td>0</td>
<td>ADCLPOL</td>
<td>0</td>
<td>ADC left channel polarity adjust:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=inverted</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ADCRPOL</td>
<td>0</td>
<td>ADC right channel polarity adjust:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=inverted</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>ADCOSR</td>
<td>0</td>
<td>ADC oversample rate select:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=64x (lower power)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=128x (best performance)</td>
</tr>
</tbody>
</table>

Table 13 ADC Control

SELECTABLE HIGH PASS FILTER

A selectable high pass filter is provided. To disable this filter set HPFEN=0. The filter has two modes controlled by HPFAPP. In Audio Mode (HPFAPP=0) the filter is first order, with a cut-off frequency of 3.7Hz. In Application Mode (HPFAPP=1) the filter is second order, with a cut-off frequency selectable via the HPFCUT register. The cut-off frequencies when HPFAPP=1 are shown in Table 15.
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R14 ADC Control</td>
<td>8</td>
<td>HPFEN</td>
<td>1</td>
<td>High Pass Filter Enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=enabled</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>HPFAPP</td>
<td>0</td>
<td>Select audio mode or application mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=Audio mode (1st order, fc = ~3.7Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=Application mode (2nd order, fc = HPFCUT)</td>
</tr>
<tr>
<td></td>
<td>6:4</td>
<td>HPFCUT</td>
<td>000</td>
<td>Application mode cut-off frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Table 15 for details.</td>
</tr>
</tbody>
</table>

Table 14 ADC Enable Control

<table>
<thead>
<tr>
<th>HPFCUT [2:0]</th>
<th>SR=101/100</th>
<th>SR=011/010</th>
<th>SR=001/000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fs (kHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>82</td>
<td>113</td>
<td>122</td>
</tr>
<tr>
<td>001</td>
<td>102</td>
<td>141</td>
<td>153</td>
</tr>
<tr>
<td>010</td>
<td>131</td>
<td>180</td>
<td>196</td>
</tr>
<tr>
<td>011</td>
<td>163</td>
<td>225</td>
<td>245</td>
</tr>
<tr>
<td>100</td>
<td>204</td>
<td>281</td>
<td>306</td>
</tr>
<tr>
<td>101</td>
<td>261</td>
<td>360</td>
<td>392</td>
</tr>
<tr>
<td>110</td>
<td>327</td>
<td>450</td>
<td>490</td>
</tr>
<tr>
<td>111</td>
<td>408</td>
<td>563</td>
<td>612</td>
</tr>
</tbody>
</table>

Table 15 High Pass Filter Cut-off Frequencies (HPFAPP=1). Values in Hz.

Note that the High Pass filter values (when HPFAPP=1) are calculated with the assumption that the SR register bits are set correctly for the actual sample rate as shown in Table 15.
PROGRAMMABLE NOTCH FILTER

A programmable notch filter is provided. This filter has a variable centre frequency and bandwidth, programmable via two coefficients, a0 and a1. The coefficients must be entered in 2’s complement notation. A0 and a1 are represented by the register bits NFA0[13:0] and NFA1[13:0]. Because these coefficient values require four register writes to setup there is an NFU (Notch Filter Update) flag which should be set only when all four registers are setup.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R27</td>
<td>6-0</td>
<td>NFA0[13:7]</td>
<td>0</td>
<td>Notch filter a0 coefficient, bits [13:7]</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>NFEN</td>
<td>0</td>
<td>Notch filter enable: 0=Disabled 1=Enabled</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>NFU</td>
<td>0</td>
<td>Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.</td>
</tr>
<tr>
<td>R28</td>
<td>6-0</td>
<td>NFA0[6:0]</td>
<td>0</td>
<td>Notch filter a0 coefficient, bits [6:0]</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>NFU</td>
<td>0</td>
<td>Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>NFU</td>
<td>0</td>
<td>Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.</td>
</tr>
<tr>
<td>R30</td>
<td>0-6</td>
<td>NFA1[6:0]</td>
<td>0</td>
<td>Notch filter a1 coefficient, bits [6:0]</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>NFU</td>
<td>0</td>
<td>Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.</td>
</tr>
</tbody>
</table>

Table 16 Notch Filter Function

The coefficients are calculated as follows:

\[
a_0 = \frac{1 - \tan(w_a / 2)}{1 + \tan(w_a / 2)}
\]

\[
a_1 = -(1 + a_0) \cos(w_a)
\]

Where:

\[
w_a = 2 \pi f_c / f_s
\]

\[
w_b = 2 \pi f_b / f_s
\]

\(f_s = \) centre frequency in Hz, \(f_c = -3\text{dB bandwidth in Hz, } f_s = \text{sample frequency in Hz}\)

The actual register values can be determined from the coefficients as follows:

\[NFA0 = -a0 \times 2^{13}\]

\[NFA1 = -a1 \times 2^{12}\]
NOTCH FILTER WORKED EXAMPLE

The following example illustrates how to calculate the a_0 and a_1 coefficients for a desired centre frequency and -3dB bandwidth.

$F_c = 1000$ Hz
$fb = 100$ Hz
$fs = 48000$ Hz

$$
\begin{align*}
\omega_0 &= 2\pi f_c / f_s = 2\pi \times (1000 / 48000) = 0.1308996939 \text{ rads} \\
\omega_b &= 2\pi f_b / f_s = 2\pi \times (100 / 48000) = 0.01308996939 \text{ rads}
\end{align*}
$$

$$
\begin{align*}
a_0 &= \frac{1 - \tan(\omega_b / 2)}{1 + \tan(\omega_b / 2)} = \frac{1 - \tan(0.01308996939 / 2)}{1 + \tan(0.01308996939 / 2)} = 0.9869949627 \\
a_1 &= -(1 + a_0)\cos(\omega_b) = -(1 + 0.9869949627)\cos(0.1308996939) = -1.969995945
\end{align*}
$$

$NFA0 = -a_0 \times 2^{13} = -8085$ (rounded to nearest whole number)

$NFA1 = -a_1 \times 2^{12} = 8069$ (rounded to nearest whole number)

These values are then converted to a 2’s complement notation:

$NfnA0[12:0] = 13'h1F95$; Converting to 2’s complement $NFA0 = 14'h4000 – 14'h1F95 = 14'h206B$

$NfnA1[12:0] = 13'h1F85$; Converting to 2’s complement $NFA0 = 14'h1F85$

DIGITAL ADC VOLUME CONTROL

The output of the ADCs can be digitally attenuated over a range from –127dB to 0dB in 0.5dB steps. The gain for a given eight-bit code X is given by:

$$0.5 \times (G-255) \text{ dB for } 1 \leq G \leq 255; \quad \text{MUTE for } G = 0$$
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7:0</td>
<td>ADCVOLL</td>
<td>11111111 (0dB)</td>
<td>Left ADC Digital Volume Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000 = Digital Mute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0001 = -127dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0010 = -126.5dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>… 0.5dB steps up to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1111 1111 = 0dB</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>ADCVU</td>
<td>Not latched</td>
<td>ADC left and ADC right volume do not</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>update until a 1 is written to ADCVU (in reg 15 or 16)</td>
</tr>
<tr>
<td></td>
<td>7:0</td>
<td>ADCVOLR</td>
<td>11111111 (0dB)</td>
<td>Right ADC Digital Volume Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000 = Digital Mute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0001 = -127dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0010 = -126.5dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>… 0.5dB steps up to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1111 1111 = 0dB</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>ADCVU</td>
<td>Not latched</td>
<td>ADC left and ADC right volume do not</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>update until a 1 is written to ADCVU (in reg 15 or 16)</td>
</tr>
</tbody>
</table>
INPUT LIMITER / AUTOMATIC LEVEL CONTROL (ALC)

The WM8978 has an automatic PGA gain control circuit, which can function as an input peak limiter or as an automatic level control (ALC).

The Automatic Level Control (ALC) provides continuous adjustment of the input PGA in response to the amplitude of the input signal. A digital peak detector monitors the input signal amplitude and compares it to a register defined threshold level (ALCLVL).

If the signal is below the threshold, the ALC will increase the gain of the PGA at a rate set by ALCDCY. If the signal is above the threshold, the ALC will reduce the gain of the PGA at a rate set by ALCATK.

The ALC has two modes selected by the ALCMODE register: normal mode and peak limiter mode. The ALC/limiter function is enabled by setting the register bit R32[8] ALCSEL.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R32 (20h)</td>
<td>2:0</td>
<td>ALCMIN [2:0]</td>
<td>000 (-12dB)</td>
<td>Set minimum gain of PGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>000 = -12dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>001 = -6dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>010 = 0dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>011 = +6dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 = +12dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>101 = +18dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>110 = +24dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>111 = +30dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5:3</td>
<td>ALCMAX [2:0]</td>
<td>111 (+35.25dB)</td>
<td>Set maximum gain of PGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>111 = +35.25dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>110 = +29.25dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>101 = +23.25dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 = +17.25dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>011 = +11.25dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>010 = +5.25dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>001 = -0.75dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>000 = -6.75dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8:7</td>
<td>ALCSEL</td>
<td>00</td>
<td>ALC function select</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00 = ALC disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01 = Right channel ALC enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 = Left channel ALC enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 = Both channels ALC enabled</td>
<td></td>
</tr>
<tr>
<td>R33 (21h)</td>
<td>3:0</td>
<td>ALC_LVL [3:0]</td>
<td>1011 (-6dB)</td>
<td>ALC target — sets signal level at ADC input</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1111 = -1.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1110 = -1.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1101 = -3dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1100 = -4.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1011 = -6dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1010 = -7.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1001 = -9dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000 = -10.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0111 = -12dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0110 = -13.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0101 = -15dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0100 = -16.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0011 = -18dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0010 = -19.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0001 = -21dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000 = -22.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Reserved</td>
<td>0</td>
<td>Reserved. Set to 0.</td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>7:4</td>
<td>ALCHLD [3:0]</td>
<td>0000 (0ms)</td>
<td>ALC hold time before gain is increased. 0000 = 0ms 0001 = 2.67ms 0010 = 5.33ms 0011 = 10.66ms 0100 = 21.32ms 0101 = 42.64ms 0110 = 85.28ms 0111 = 0.17s 1000 = 0.34s 1001 = 0.68s 1010 or higher = 1.36s</td>
</tr>
</tbody>
</table>

R34 (22h) ALC Control 3

| 8 | ALCMODE | 0 | Determines the ALC mode of operation: 0 = ALC mode (Normal Operation) 1 = Limiter mode. |

<table>
<thead>
<tr>
<th>7:4</th>
<th>ALCDCY [3:0]</th>
<th>0011 (26ms/6dB)</th>
<th>Decay (gain ramp-up time (ALCMODE == 0))</th>
<th>Per step</th>
<th>Per 6dB</th>
<th>90% of range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0000</td>
<td>410us 3.28ms 23.6ms</td>
<td>90.8us</td>
<td>726us</td>
<td>5.23ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0001</td>
<td>820us 6.56ms 47.2ms</td>
<td>182us</td>
<td>1.45ms</td>
<td>10.5ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0010</td>
<td>1.64ms 13.1ms 94.5ms</td>
<td>363us</td>
<td>2.91ms</td>
<td>20.9ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1010 or higher</td>
<td>420ms 3.36s 24.2s</td>
<td>93ms</td>
<td>744ms</td>
<td>5.36s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0011 (5.8ms/6dB)</th>
<th>Decay (gain ramp-up time (ALCMODE == 1))</th>
<th>Per step</th>
<th>Per 6dB</th>
<th>90% of range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0000</td>
<td>90.8us 726us 5.23ms</td>
<td>104us</td>
<td>832us</td>
<td>6ms</td>
</tr>
<tr>
<td></td>
<td>0001</td>
<td>182us 1.45ms 10.5ms</td>
<td>208us</td>
<td>1.68ms</td>
<td>12ms</td>
</tr>
<tr>
<td></td>
<td>0010</td>
<td>363us 2.91ms 20.9ms</td>
<td>416us</td>
<td>3.33ms</td>
<td>24ms</td>
</tr>
<tr>
<td></td>
<td>1010 or higher</td>
<td>93ms 744ms 5.36s</td>
<td>106ms</td>
<td>852ms</td>
<td>6.13s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3:0</th>
<th>ALCATK [3:0]</th>
<th>0010 (3.3ms/6dB)</th>
<th>ALC attack (gain ramp-down) time (ALCMODE == 0)</th>
<th>Per step</th>
<th>Per 6dB</th>
<th>90% of range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0000</td>
<td>104us 832us 6ms</td>
<td>22.7us</td>
<td>182.4us</td>
<td>1.31ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0001</td>
<td>208us 1.68ms 12ms</td>
<td>45.4us</td>
<td>363us</td>
<td>2.62ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0010</td>
<td>416us 3.33ms 24ms</td>
<td>90.8us</td>
<td>726us</td>
<td>5.23ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0010 (726us/6dB)</th>
<th>ALC attack (gain ramp-down) time (ALCMODE == 1)</th>
<th>Per step</th>
<th>Per 6dB</th>
<th>90% of range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0000</td>
<td>22.7us 182.4us 1.31ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0001</td>
<td>45.4us 363us 2.62ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0010</td>
<td>90.8us 726us 5.23ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 17 ALC Control Registers

When the ALC is disabled, the input PGA remains at the last controlled value of the ALC. An input gain update must be made by writing to the INPPGAVOLL/R register bits.

NORMAL MODE

In normal mode, the ALC will attempt to maintain a constant signal level by increasing or decreasing the gain of the PGA. The following diagram shows an example of this.

Figure 17 ALC Normal Mode Operation
LIMITER MODE

In limiter mode, the ALC will reduce peaks that go above the threshold level, but will not increase the PGA gain beyond the starting level. The starting level is the PGA gain setting when the ALC is enabled in limiter mode. If the ALC is started in limiter mode, this is the gain setting of the PGA at start-up. If the ALC is switched into limiter mode after running in ALC mode, the starting gain will be the gain at switchover. The diagram below shows an example of limiter mode.

Figure 18 ALC Limiter Mode Operation

ALC LIMITER MODE INITIALISATION SEQUENCE

In order to properly initialise the ALC function, the following sequence of register writes is required:

1. Set INPPGAVOLL to the required input PGA gain (R45[5:0]).
2. Set INPPGAVOLR to the required input PGA gain (R46[5:0]).
3. Enable analogue inputs (R44[2:0]) as required.
5. Set ALCMAXGAIN (R32[5:3]) and ALCMINGAIN (R32[2:0]) to the required level for operation.
6. Set ALCLVL (R33[3:0]) to the required level for operation.
7. Set R34 to 0x000.
8. Wait for 1ms to allow the input PGA gain to update by the limiter circuit.
10. Wait for 1ms to allow the input PGA gain to update by the limiter circuit.
ATTACK AND DECAY TIMES

The attack and decay times set the update times for the PGA gain. The attack time is the time constant used when the gain is reducing. The decay time is the time constant used when the gain is increasing. In limiter mode, the time constants are faster than in ALC mode. The time constants are shown below in terms of a single gain step, a change of 6dB and a change of 90% of the PGAs gain range.

Note that, these times will vary slightly depending on the sample rate used (specified by the SR register).

NORMAL MODE

<table>
<thead>
<tr>
<th>ALCATK</th>
<th>tATK</th>
<th>tATK6dB</th>
<th>tATK90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>104µs</td>
<td>832µs</td>
<td>6ms</td>
</tr>
<tr>
<td>0001</td>
<td>208µs</td>
<td>1.66ms</td>
<td>12ms</td>
</tr>
<tr>
<td>0010</td>
<td>416µs</td>
<td>3.33ms</td>
<td>24ms</td>
</tr>
<tr>
<td>0011</td>
<td>832µs</td>
<td>6.66ms</td>
<td>48ms</td>
</tr>
<tr>
<td>0100</td>
<td>1.66ms</td>
<td>13.3ms</td>
<td>96ms</td>
</tr>
<tr>
<td>0101</td>
<td>3.33ms</td>
<td>26.6ms</td>
<td>192ms</td>
</tr>
<tr>
<td>0110</td>
<td>6.66ms</td>
<td>53.2ms</td>
<td>384ms</td>
</tr>
<tr>
<td>0111</td>
<td>13.3ms</td>
<td>106ms</td>
<td>767ms</td>
</tr>
<tr>
<td>1000</td>
<td>26.6ms</td>
<td>213.2ms</td>
<td>1.53s</td>
</tr>
<tr>
<td>1001</td>
<td>53.2ms</td>
<td>426ms</td>
<td>3.07s</td>
</tr>
<tr>
<td>1010</td>
<td>106ms</td>
<td>852ms</td>
<td>6.13s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALCDCY</th>
<th>tDCY</th>
<th>tDCY6dB</th>
<th>tDCY90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>410µs</td>
<td>3.28ms</td>
<td>23.6ms</td>
</tr>
<tr>
<td>0001</td>
<td>820µs</td>
<td>6.56ms</td>
<td>47.2ms</td>
</tr>
<tr>
<td>0010</td>
<td>1.64ms</td>
<td>13.1ms</td>
<td>94.5ms</td>
</tr>
<tr>
<td>0011</td>
<td>3.28ms</td>
<td>26.2ms</td>
<td>189ms</td>
</tr>
<tr>
<td>0100</td>
<td>6.56ms</td>
<td>52.5ms</td>
<td>378ms</td>
</tr>
<tr>
<td>0101</td>
<td>13.1ms</td>
<td>105ms</td>
<td>756ms</td>
</tr>
<tr>
<td>0110</td>
<td>26.2ms</td>
<td>210ms</td>
<td>1.51s</td>
</tr>
<tr>
<td>0111</td>
<td>52.5ms</td>
<td>420ms</td>
<td>3.02s</td>
</tr>
<tr>
<td>1000</td>
<td>105ms</td>
<td>840ms</td>
<td>6.05s</td>
</tr>
<tr>
<td>1001</td>
<td>210ms</td>
<td>1.68s</td>
<td>12.1s</td>
</tr>
<tr>
<td>1010</td>
<td>420ms</td>
<td>3.36s</td>
<td>24.2s</td>
</tr>
</tbody>
</table>

Table 18 ALC Normal Mode (Attack and Decay times)
LIMITER MODE

<table>
<thead>
<tr>
<th>ALCATK</th>
<th>t_{ATKLIM}</th>
<th>$t_{ATKLIM6,dB}$</th>
<th>$t_{ATKLIM90%}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>22.7µs</td>
<td>182µs</td>
<td>1.31ms</td>
</tr>
<tr>
<td>0001</td>
<td>45.4µs</td>
<td>363µs</td>
<td>2.62ms</td>
</tr>
<tr>
<td>0010</td>
<td>90.8µs</td>
<td>726µs</td>
<td>5.23ms</td>
</tr>
<tr>
<td>0011</td>
<td>182µs</td>
<td>1.45ms</td>
<td>10.5ms</td>
</tr>
<tr>
<td>0100</td>
<td>363µs</td>
<td>2.91ms</td>
<td>20.9ms</td>
</tr>
<tr>
<td>0101</td>
<td>726µs</td>
<td>5.81ms</td>
<td>41.8ms</td>
</tr>
<tr>
<td>0110</td>
<td>1.45ms</td>
<td>11.6ms</td>
<td>83.7ms</td>
</tr>
<tr>
<td>0111</td>
<td>2.9ms</td>
<td>23.2ms</td>
<td>167ms</td>
</tr>
<tr>
<td>1000</td>
<td>5.81ms</td>
<td>46.5ms</td>
<td>335ms</td>
</tr>
<tr>
<td>1001</td>
<td>11.6ms</td>
<td>93ms</td>
<td>669ms</td>
</tr>
<tr>
<td>1010</td>
<td>23.2ms</td>
<td>186ms</td>
<td>1.34s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALCDCY</th>
<th>t_{DCYLIM}</th>
<th>$t_{DCYLIM6,dB}$</th>
<th>$t_{DCYLIM90%}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>90.8µs</td>
<td>726µs</td>
<td>5.23ms</td>
</tr>
<tr>
<td>0001</td>
<td>182µs</td>
<td>1.45ms</td>
<td>10.5ms</td>
</tr>
<tr>
<td>0010</td>
<td>363µs</td>
<td>2.91ms</td>
<td>20.9ms</td>
</tr>
<tr>
<td>0011</td>
<td>726µs</td>
<td>5.81ms</td>
<td>41.8ms</td>
</tr>
<tr>
<td>0100</td>
<td>1.45ms</td>
<td>11.6ms</td>
<td>83.7ms</td>
</tr>
<tr>
<td>0101</td>
<td>2.91ms</td>
<td>23.2ms</td>
<td>167ms</td>
</tr>
<tr>
<td>0110</td>
<td>5.81ms</td>
<td>46.5ms</td>
<td>335ms</td>
</tr>
<tr>
<td>0111</td>
<td>11.6ms</td>
<td>93ms</td>
<td>669ms</td>
</tr>
<tr>
<td>1000</td>
<td>23.2ms</td>
<td>186ms</td>
<td>1.34s</td>
</tr>
<tr>
<td>1001</td>
<td>46.5ms</td>
<td>372ms</td>
<td>2.68s</td>
</tr>
<tr>
<td>1010</td>
<td>93ms</td>
<td>744ms</td>
<td>5.36s</td>
</tr>
</tbody>
</table>

MINIMUM AND MAXIMUM GAIN

The ALCMIN and ALCMAX register bits set the minimum/maximum gain value that the PGA can be set to whilst under the control of the ALC. This has no effect on the PGA when ALC is not enabled.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R32 ALC Control 1</td>
<td>5:3</td>
<td>ALCMAX</td>
<td>111</td>
<td>Set Maximum Gain of PGA</td>
</tr>
<tr>
<td></td>
<td>2:0</td>
<td>ALCMIN</td>
<td>000</td>
<td>Set minimum gain of PGA</td>
</tr>
</tbody>
</table>

In normal mode, ALCMAX sets the maximum boost which can be applied to the signal. In limiter mode, ALCMAX will normally have no effect (assuming the starting gain value is less than the maximum gain specified by ALCMAX) because the maximum gain is set at the starting gain level.

ALCMIN sets the minimum gain value which can be applied to the signal.
Figure 19 ALC Min/Max Gain

<table>
<thead>
<tr>
<th>ALCMAX</th>
<th>Maximum Gain (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>35.25</td>
</tr>
<tr>
<td>110</td>
<td>29.25</td>
</tr>
<tr>
<td>101</td>
<td>23.25</td>
</tr>
<tr>
<td>100</td>
<td>17.25</td>
</tr>
<tr>
<td>011</td>
<td>11.25</td>
</tr>
<tr>
<td>010</td>
<td>5.25</td>
</tr>
<tr>
<td>001</td>
<td>-0.75</td>
</tr>
<tr>
<td>000</td>
<td>-6.75</td>
</tr>
</tbody>
</table>

Table 21 ALC Max Gain Values

Note that if the ALC gain setting strays outside the ALC operating range, either by starting the ALC outside of the range or changing the ALCMAX or ALCMIN settings during operation, the ALC will immediately adjust the gain to return to the ALC operating range. It is recommended that the ALC starting gain is set between the ALCMAX and ALCMIN limits.

<table>
<thead>
<tr>
<th>ALCMIN</th>
<th>Minimum Gain (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>-12</td>
</tr>
<tr>
<td>001</td>
<td>-6</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>101</td>
<td>18</td>
</tr>
<tr>
<td>110</td>
<td>24</td>
</tr>
<tr>
<td>111</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 22 ALC Min Gain Values
ALC HOLD TIME (NORMAL MODE ONLY)

In Normal mode, the ALC has an adjustable hold time which sets a time delay before the ALC begins its decay phase (gain increasing). The hold time is set by the ALCHLD register.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R33</td>
<td>7:4</td>
<td>ALCHLD</td>
<td>0000</td>
<td>ALC hold time before gain is increased.</td>
</tr>
</tbody>
</table>

Table 23 ALC Hold Time

If the hold time is exceeded this indicates that the signal has reached a new average level and the ALC will increase the gain to adjust for that new average level. If the signal goes above the threshold during the hold period, the hold phase is abandoned and the ALC returns to normal operation.

![Input Signal](image)

![PGA Gain](image)

![Output of PGA](image)

Figure 20 ALCLVL
Figure 21 ALC Hold Time

<table>
<thead>
<tr>
<th>ALCCHLD</th>
<th>t_HOLD (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>2.67ms</td>
</tr>
<tr>
<td>0010</td>
<td>5.34ms</td>
</tr>
<tr>
<td>0011</td>
<td>10.7ms</td>
</tr>
<tr>
<td>0100</td>
<td>21.4ms</td>
</tr>
<tr>
<td>0101</td>
<td>42.7ms</td>
</tr>
<tr>
<td>0110</td>
<td>85.4ms</td>
</tr>
<tr>
<td>0111</td>
<td>171ms</td>
</tr>
<tr>
<td>1000</td>
<td>342ms</td>
</tr>
<tr>
<td>1001</td>
<td>684ms</td>
</tr>
<tr>
<td>1010</td>
<td>1.37s</td>
</tr>
</tbody>
</table>

Table 24 ALC Hold Time Values
PEAK LIMITER

To prevent clipping when a large signal occurs just after a period of quiet, the ALC circuit includes a limiter function. If the ADC input signal exceeds 87.5% of full scale (~1.16dB), the PGA gain is ramped down at the maximum attack rate (as when ALCATK = 0000), until the signal level falls below 87.5% of full scale. This function is automatically enabled whenever the ALC is enabled.

Note: If ALCATK = 0000, then the limiter makes no difference to the operation of the ALC. It is designed to prevent clipping when long attack times are used.

NOISE GATE (NORMAL MODE ONLY)

When the signal is very quiet and consists mainly of noise, the ALC function may cause "noise pumping", i.e. loud hissing noise during silence periods. The WM8978 has a noise gate function that prevents noise pumping by comparing the signal level at the input pins against a noise gate threshold, NGTH. The noise gate cuts in when:

\[\text{Signal level at ADC [dBFS]} < \text{NGTH [dBFS]} + \text{PGA gain [dB]} + \text{Mic Boost gain [dB]} \]

This is equivalent to:

\[\text{Signal level at input pin [dBFS]} < \text{NGTH [dBFS]} \]

The PGA gain is then held constant (preventing it from ramping up as it normally would when the signal is quiet).

The table below summarises the noise gate control register. The NGTH control bits set the noise gate threshold with respect to the ADC full-scale range. The threshold is adjusted in 6dB steps. Levels at the extremes of the range may cause inappropriate operation, so care should be taken with set–up of the function. The noise gate only operates in conjunction with the ALC and cannot be used in limiter mode.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| R35 (23h) | 2:0 | NGTH | 000 | Noise gate threshold:
| | | | | 000 = -39dB
| | | | | 001 = -45dB
| | | | | 010 = -51dB
| | | | | 011 = -57dB
| | | | | 100 = -63dB
| | | | | 101 = -69dB
| | | | | 110 = -75dB
| | | | | 111 = -81dB |
| | 3 | NGATEN| 0 | Noise gate function enable
| | | | | 1 = enable
| | | | | 0 = disable |

Table 25 ALC Noise Gate Control

The diagrams below show the response of the system to the same signal with and without noise gate.
Figure 22 ALC Operation Above Noise Gate Threshold
The WM8978 output signal paths consist of digital application filters, up-sampling filters, stereo Hi-Fi DACs, analogue mixers, speaker, stereo headphone and stereo line/mono/midrail output drivers. The digital filters and DAC are enabled by register bits DACENL and DACENR. The mixers and output drivers can be separately enabled by individual control bits (see Analogue Outputs). Thus it is possible to utilise the analogue mixing and amplification provided by the WM8978, irrespective of whether the DACs are enabled or not.

The WM8978 DACs receive digital input data on the DACDAT pin. The digital filter block processes the data to provide the following functions:

- Digital volume control
- Graphic equaliser
- Digital peak limiter.
- Sigma-Delta Modulation

High performance sigma-delta 24-bit audio DAC converts the digital data into an analogue signal.
The analogue outputs from the DACs can then be mixed with the aux analogue inputs and the ADC analogue inputs. The mix is fed to the output drivers for headphone (LOUT1/ROUT1), speaker (LOUT2/ROUT2) or line (OUT3/OUT4). OUT3 and OUT4 have additional mixers which allow them to output different signals to the headphone and speaker outputs.

DIGITAL PLAYBACK (DAC) PATH

Digital data is passed to the WM8978 via the flexible audio interface and is then passed through a variety of advanced digital filters (as shown in Figure 24) to the hi-fi DACs. The DACs are enabled by the DACENL/R register bits.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3 Power Management 3</td>
<td>0</td>
<td>DACENL</td>
<td>0</td>
<td>Left channel DAC enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = DAC disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = DAC enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>DACENR</td>
<td>0</td>
<td>Right channel DAC enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = DAC disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = DAC enabled</td>
<td></td>
</tr>
</tbody>
</table>

Table 26 DAC Enable Control

The WM8978 also has a Soft Mute function, which, when enabled, gradually attenuates the volume of the digital signal to zero. When disabled, the gain will ramp back up to the digital gain setting. This function is enabled by default. To play back an audio signal, this function must first be disabled by setting the SOFTMUTE bit to zero.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10 DAC Control</td>
<td>0</td>
<td>DACPOL</td>
<td>0</td>
<td>Left DAC output polarity:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = non-inverted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = inverted (180 degrees phase shift)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>DACPOLR</td>
<td>0</td>
<td>Right DAC output polarity:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = non-inverted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = inverted (180 degrees phase shift)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AMUTE</td>
<td>0</td>
<td>Automute enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = Amute disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = Amute enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>DACOSR</td>
<td>0</td>
<td>DAC oversampling rate:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0=64x (lowest power)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=128x (best performance)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>SOFTMUTE</td>
<td>0</td>
<td>Softmute enable:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0=Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=Disabled</td>
<td></td>
</tr>
</tbody>
</table>

Table 27 DAC Control Register

The digital audio data is converted to oversampled bit streams in the on-chip, true 24-bit digital interpolation filters. The bitstream data enters the multi-bit, sigma-delta DACs, which convert it to a high quality analogue audio signal. The multi-bit DAC architecture reduces high frequency noise and sensitivity to clock jitter. It also uses a Dynamic Element Matching technique for high linearity and low distortion.
The DAC output phase defaults to non-inverted. Setting DACPOL will invert the DAC output phase on the left channel and DACPOLR inverts the phase on the right channel.

AUTO-MUTE

The DAC has an auto-mute function which applies an analogue mute when 1024 consecutive zeros are detected. The mute is released as soon as a non-zero sample is detected. Automute can be disabled using the AMUTE control bit.

DIGITAL HI-FI DAC VOLUME (GAIN) CONTROL

The signal volume from each hi-fi DAC can be controlled digitally. The gain and attenuation range is −127dB to 0dB in 0.5dB steps. The level of attenuation for an eight-bit code X is given by:

\[0.5 \times (X-255) \text{ dB for } 1 \leq X \leq 255; \text{ MUTE for } X = 0 \]

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R11</td>
<td>7:0</td>
<td>DACVOLL</td>
<td>11111111 (0dB)</td>
<td>Left DAC Digital Volume Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[7:0]</td>
<td></td>
<td>0000 0000 = Digital Mute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0001 = -127dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0010 = -126.5dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>… 0.5dB steps up to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1111 1111 = 0dB</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>DACVU</td>
<td>Not latched</td>
<td>DAC left and DAC right volume do not update until a 1 is written to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DACVU (in reg 11 or 12)</td>
</tr>
<tr>
<td>R12</td>
<td>7:0</td>
<td>DACVOLR</td>
<td>11111111 (0dB)</td>
<td>Right DAC Digital Volume Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[7:0]</td>
<td></td>
<td>0000 0000 = Digital Mute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0001 = -127dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0010 = -126.5dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>… 0.5dB steps up to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1111 1111 = 0dB</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>DACVU</td>
<td>Not latched</td>
<td>DAC left and DAC right volume do not update until a 1 is written to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DACVU (in reg 11 or 12)</td>
</tr>
</tbody>
</table>

Table 28 DAC Digital Volume Control

Note: An additional gain of up to +12dB can be added using the gain block embedded in the digital peak limiter circuit (see DAC OUTPUT LIMITER section).

5-BAND EQUALISER

A 5-band graphic equaliser function which can be used to change the output frequency levels to suit the environment. This can be applied to the ADC or DAC path and is described in the 5-BAND EQUALISER section for further details on this feature.

3-D ENHANCEMENT

The WM8978 has an advanced digital 3-D enhancement feature which can be used to vary the perceived stereo separation of the left and right channels. Like the 5-band equaliser this feature can be applied to either the ADC record path or the DAC playback path but not both simultaneously. See the 3-D STEREO ENHANCEMENT section for further details on this feature.

DAC DIGITAL OUTPUT LIMITER

The WM8978 has a digital output limiter function. The operation of this is shown in Figure 25. In this diagram the upper graph shows the envelope of the input/output signals and the lower graph shows the gain characteristic.
Figure 25 DAC Digital Limiter Operation

The limiter has a programmable upper threshold which is close to 0dB. Referring to Figure 25, in normal operation (LIMBOOST=000 => limit only) signals below this threshold are unaffected by the limiter. Signals above the upper threshold are attenuated at a specific attack rate (set by the LIMATK register bits) until the signal falls below the threshold. The limiter also has a lower threshold 1dB below the upper threshold. When the signal falls below the lower threshold the signal is amplified at a specific decay rate (controlled by LIMDCY register bits) until a gain of 0dB is reached. Both threshold levels are controlled by the LIMLVL register bits. The upper threshold is 0.5dB above the value programmed by LIMLVL and the lower threshold is 0.5dB below the LIMLVL value.

VOLUME BOOST

The limiter has programmable upper gain which boosts signals below the threshold to compress the dynamic range of the signal and increase its perceived loudness. This operates as an ALC function with limited boost capability. The volume boost is from 0dB to +12dB in 1dB steps, controlled by the LIMBOOST register bits.

The output limiter volume boost can also be used as a stand alone digital gain boost when the limiter is disabled.
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R24 DAC digital limiter control 1</td>
<td>3:0</td>
<td>LIMATK</td>
<td>0010</td>
<td>Limiter Attack time (per 6dB gain change) for 44.1kHz sampling. Note that these will scale proportionally with sample rate: 0000=94us, 0001=188us, 0010=375us, 0011=750us, 0100=1.5ms, 0101=3ms, 0110=6ms, 0111=12ms, 1000=24ms, 1001=48ms, 1010=96ms, 1011 to 1111=192ms</td>
</tr>
<tr>
<td>R25 DAC digital limiter control 2</td>
<td>3:0</td>
<td>LIMBOOST</td>
<td>0000</td>
<td>Limiter volume boost (can be used as a stand alone volume boost when LIMEN=0): 0000=0dB, 0001=+1dB, 0010=+2dB, ... (1dB steps), 1011=+11dB, 1100=+12dB, 1101 to 1111=reserved</td>
</tr>
<tr>
<td>7:4</td>
<td>LIMDCY</td>
<td>0011</td>
<td></td>
<td>Limiter Decay time (per 6dB gain change) for 44.1kHz sampling. Note that these will scale proportionally with sample rate: 0000=750us, 0001=1.5ms, 0010=3ms, 0011=6ms, 0100=12ms, 0101=24ms, 0110=48ms, 0111=96ms, 1000=192ms, 1001=384ms, 1010=768ms, 1011 to 1111=1,536s</td>
</tr>
</tbody>
</table>

8 LIMEN 0 Enable the DAC digital limiter: 0=disabled, 1=enabled
5-BAND GRAPHIC EQUALISER

A 5-band graphic equaliser (EQ) is provided, which can be applied to the ADC or DAC path, together with 3D enhancement, under control of the EQ3DMODE register bit.

Register Address

<table>
<thead>
<tr>
<th>BIT ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:4</td>
<td>6:4</td>
<td>LIMLVL</td>
<td>000</td>
<td>Programmable signal threshold level (determines level at which the limiter starts to operate)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000=-1dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001=-2dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>010=-3dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>011=-4dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100=-5dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101 to 111=-6dB</td>
</tr>
</tbody>
</table>

Table 29 DAC Digital Limiter Control

Register Address

<table>
<thead>
<tr>
<th>BIT ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R18 EQ Control 1</td>
<td>8</td>
<td>EQ3DMODE</td>
<td>1</td>
<td>0 = Equaliser and 3D Enhancement applied to ADC path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Equaliser and 3D Enhancement applied to DAC path</td>
</tr>
</tbody>
</table>

Table 30 EQ and 3D Enhancement DAC or ADC Path Select

The equaliser consists of low and high frequency shelving filters (Band 1 and 5) and three peak filters for the centre bands. Each has adjustable cut-off or centre frequency, and selectable boost (+/- 12dB in 1dB steps). The peak filters have selectable bandwidth.

Register Address

<table>
<thead>
<tr>
<th>BIT ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R18 EQ Band 1 Control</td>
<td>4:0</td>
<td>EQ1G</td>
<td>01100 (0dB)</td>
<td>Band 1 Gain Control. See Table 36 for details.</td>
</tr>
<tr>
<td></td>
<td>6:5</td>
<td>EQ1C</td>
<td>01</td>
<td>Band 1 Cut-off Frequency:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00=80Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01=105Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10=135Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11=175Hz</td>
</tr>
</tbody>
</table>

Table 31 EQ Band 1 Control

<table>
<thead>
<tr>
<th>BIT ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R19 EQ Band 2 Control</td>
<td>4:0</td>
<td>EQ2G</td>
<td>01100 (0dB)</td>
<td>Band 2 Gain Control. See Table 36 for details.</td>
</tr>
<tr>
<td></td>
<td>6:5</td>
<td>EQ2C</td>
<td>01</td>
<td>Band 2 Centre Frequency:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00=230Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01=300Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10=385Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11=500Hz</td>
</tr>
</tbody>
</table>

Table 32 EQ Band 2 Control
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R20</td>
<td>4:0</td>
<td>EQ3G</td>
<td>01100 (0dB)</td>
<td>Band 3 Gain Control. See Table 36 for details.</td>
</tr>
<tr>
<td></td>
<td>6:5</td>
<td>EQ3C</td>
<td>01</td>
<td>Band 3 Centre Frequency: 00=650Hz, 01=850Hz, 10=1.1kHz, 11=1.4kHz</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>EQ3BW</td>
<td>0</td>
<td>Band 3 Bandwidth Control 0=narrow bandwidth, 1=wide bandwidth</td>
</tr>
</tbody>
</table>

Table 33 EQ Band 3 Control

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R21</td>
<td>4:0</td>
<td>EQ4G</td>
<td>01100 (0dB)</td>
<td>Band 4 Gain Control. See Table 36 for details</td>
</tr>
<tr>
<td></td>
<td>6:5</td>
<td>EQ4C</td>
<td>01</td>
<td>Band 4 Centre Frequency: 00=1.8kHz, 01=2.4kHz, 10=3.2kHz, 11=4.1kHz</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>EQ4BW</td>
<td>0</td>
<td>Band 4 Bandwidth Control 0=narrow bandwidth, 1=wide bandwidth</td>
</tr>
</tbody>
</table>

Table 34 EQ Band 4 Control

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R22</td>
<td>4:0</td>
<td>EQ5G</td>
<td>01100 (0dB)</td>
<td>Band 5 Gain Control. See Table 36 for details.</td>
</tr>
<tr>
<td></td>
<td>6:5</td>
<td>EQ5C</td>
<td>01</td>
<td>Band 5 Cut-off Frequency: 00=5.3kHz, 01=6.9kHz, 10=9kHz, 11=11.7kHz</td>
</tr>
</tbody>
</table>

Table 35 EQ Band 5 Control

<table>
<thead>
<tr>
<th>GAIN REGISTER</th>
<th>GAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>+12dB</td>
</tr>
<tr>
<td>00001</td>
<td>+11dB</td>
</tr>
<tr>
<td>00010</td>
<td>+10dB</td>
</tr>
<tr>
<td>01100</td>
<td>0dB</td>
</tr>
<tr>
<td>01101</td>
<td>-1dB</td>
</tr>
<tr>
<td>11000</td>
<td>-12dB</td>
</tr>
<tr>
<td>11001 to 11111</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Table 36 Gain Register Table
3D STEREO ENHANCEMENT

The WM8978 has a digital 3D enhancement option to increase the perceived separation between the left and right channels. Selection of 3D for record or playback is controlled by register bit EQ3DMODE. Switching this bit from record to playback or from playback to record may only be done when ADC and DAC are disabled. The WM8978 control interface will only allow EQ3DMODE to be changed when ADC and DAC are disabled (i.e., ADCENL = 0, ADCENR = 0, DACENL = 0 and DACENR = 0).

The DEPTH3D setting controls the degree of stereo expansion.

When 3D enhancement is used, it may be necessary to attenuate the signal by 6dB to avoid limiting.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R41 (29h)</td>
<td>3:0</td>
<td>DEPTH3D[3:0]</td>
<td>0000</td>
<td>Stereo depth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000: 0% (minimum 3D effect)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0001: 6.67%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1110: 93.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1111: 100% (maximum 3D effect)</td>
</tr>
</tbody>
</table>

Table 37 3D Stereo Enhancement Function

ANALOGUE OUTPUTS

The WM8978 has three sets of stereo analogue outputs. These are:

- LOUT1 and ROUT1 which are normally used to drive a headphone load.
- LOUT2 and ROUT2 – normally used to drive an 8Ω BTL speaker.
- OUT3 and OUT4 – can be configured as a stereo line out (OUT3 is left output and OUT4 is right output). OUT4 can also be used to provide a mono mix of left and right channels.

LOUT2, ROUT2, OUT3 and OUT4 are supplied from SPKVDD and are capable of driving up to 1.5Vrms signals as shown in Figure 26. LOUT1 and ROUT1 are supplied from AVDD and can only drive out a 1V rms signal (AVDD/3.3).

LOUT1, ROUT1, LOUT2 and ROUT2 have individual analogue volume PGAs with -57dB to +6dB ranges.

There are four output mixers in the output signal path, the left and right channel mixers which control the signals to speaker, headphone (and optionally the line outputs) and also dedicated OUT3 and OUT4 mixers.

LEFT AND RIGHT OUTPUT CHANNEL MIXERS

The left and right output channel mixers are shown in Figure 26. These mixers allow the AUX inputs, the ADC bypass and the DAC left and right channels to be combined as desired. This allows a mono mix of the DAC channels to be done as well as mixing in external line-in from the AUX or speech from the input bypass path.

The AUX and bypass inputs have individual volume control from -15dB to +6dB and the DAC volume can be adjusted in the digital domain if required. The output of these mixers is connected to both the headphone (LOUT1 and ROUT1) and speaker (LOUT2 and ROUT2) and can optionally be connected to the OUT3 and OUT4 mixers.
Figure 26 Left/Right Output Channel Mixers
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R49</td>
<td>5</td>
<td>DACR2LMIX</td>
<td>0</td>
<td>Right DAC output to left output mixer 0 = not selected 1 = selected</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>DAACL2RMIX</td>
<td>0</td>
<td>Left DAC output to right output mixer 0 = not selected 1 = selected</td>
</tr>
<tr>
<td>R50</td>
<td>0</td>
<td>DACL2LMIX</td>
<td>1</td>
<td>Left DAC output to left output mixer 0 = not selected 1 = selected</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>BYPL2LMIX</td>
<td>0</td>
<td>Left bypass path (from the left channel input boost output) to left output mixer 0 = not selected 1 = selected</td>
</tr>
<tr>
<td></td>
<td>4:2</td>
<td>BYPLMIXVOL</td>
<td>000</td>
<td>Left bypass volume control to output channel mixer: 000 = -15dB 001 = -12dB … 101 = 0dB 110 = +3dB 111 = +6dB</td>
</tr>
<tr>
<td>R51</td>
<td>0</td>
<td>DACR2RMIX</td>
<td>1</td>
<td>Right DAC output to right output mixer 0 = not selected 1 = selected</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>BYPR2RMIX</td>
<td>0</td>
<td>Right bypass path (from the right channel input boost output) to right output mixer 0 = not selected 1 = selected</td>
</tr>
<tr>
<td></td>
<td>4:2</td>
<td>BYPRMIXVOL</td>
<td>000</td>
<td>Right bypass volume control to output channel mixer: 000 = -15dB 001 = -12dB … 101 = 0dB 110 = +3dB 111 = +6dB</td>
</tr>
</tbody>
</table>
Table 38 Left and Right Output Mixer Control

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>AUXR2RMIX</td>
<td>0</td>
<td>Right Auxiliary input to right channel output mixer:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = not selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = selected</td>
</tr>
<tr>
<td>8:6</td>
<td>AUXRMIXVOL</td>
<td>000</td>
<td>Aux right channel input to right mixer volume control:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000 = -15dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001 = -12dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110 = +3dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111 = +6dB</td>
</tr>
<tr>
<td>R3 Power management 3</td>
<td>2</td>
<td>LMIXEN</td>
<td>0</td>
<td>Left output channel mixer enable:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>RMIXEN</td>
<td>0</td>
<td>Right output channel mixer enable:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
</tbody>
</table>

HEADPHONE OUTPUTS (LOUT1 AND ROUT1)

The headphone outputs, LOUT1 and ROUT1 can drive a 16Ω or 32Ω headphone load, either through DC blocking capacitors, or DC coupled without any capacitor. Each headphone output has an analogue volume control PGA with a gain range of -57dB to +6dB as shown in Figure 29.

![Figure 27 Headphone Outputs LOUT1 and ROUT1](image)

Table 38 Left and Right Output Mixer Control
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R52</td>
<td>7</td>
<td>LOUT1ZC</td>
<td>0</td>
<td>Headphone volume zero cross enable: 1 = Change gain on zero cross only 0 = Change gain immediately</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>LOUT1MUTE</td>
<td>0</td>
<td>Left headphone output mute: 0 = Normal operation 1 = Mute</td>
</tr>
<tr>
<td></td>
<td>5:0</td>
<td>LOUT1VOL</td>
<td>111001</td>
<td>Left headphone output volume: 000000 = -57dB ... 111001 = 0dB ... 111111 = +6dB</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>HPVU</td>
<td>Not latched</td>
<td>LOUT1 and ROUT1 volumes do not update until a 1 is written to HPVU (in reg 52 or 53)</td>
</tr>
<tr>
<td>R53</td>
<td>7</td>
<td>ROUT1ZC</td>
<td>0</td>
<td>Headphone volume zero cross enable: 1 = Change gain on zero cross only 0 = Change gain immediately</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>ROUT1MUTE</td>
<td>0</td>
<td>Right headphone output mute: 0 = Normal operation 1 = Mute</td>
</tr>
<tr>
<td></td>
<td>5:0</td>
<td>ROUT1VOL</td>
<td>111001</td>
<td>Right headphone output volume: 000000 = -57dB ... 111001 = 0dB ... 111111 = +6dB</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>HPVU</td>
<td>Not latched</td>
<td>LOUT1 and ROUT1 volumes do not update until a 1 is written to HPVU (in reg 52 or 53)</td>
</tr>
</tbody>
</table>

Table 39 OUT1 Volume Control
Headphone Output using DC Blocking Capacitors:

When DC blocking capacitors are used, their capacitance and the load resistance together determine the lower cut-off frequency, f_c. Increasing the capacitance lowers f_c, improving the bass response. Smaller capacitance values will diminish the bass response. Assuming a 16Ω load and C_1, $C_2 = 220 \mu F$:

$$f_c = \frac{1}{2\pi R_L C_1} = \frac{1}{(2\pi \times 16\Omega \times 220\mu F)} = 45 \text{ Hz}$$

In the DC coupled configuration, the headphone “ground” is connected to the VMID pin. The OUT3/4 pins can be configured as a DC output driver by setting the OUT3MUTE and OUT4MUTE register bit. The DC voltage on VMID in this configuration is equal to the DC offset on the LOUT1 and ROUT1 pins therefore no DC blocking capacitors are required. This saves space and material cost in portable applications.

Note that OUT3 and OUT4 have an optional output boost of 1.5x. When these are configured in this output boost mode (OUT3BOOST/OUT4BOOST=1) then the VMID value of these outputs will be equal to 1.5xAVDD/2 and will not match the VMID of the headphone drivers. Do not use the DC coupled output mode in this configuration.

It is recommended to connect the DC coupled outputs only to headphones, and not to the line input of another device. Although the built-in short circuit protection will prevent any damage to the headphone outputs, such a connection may be noisy, and may not function properly if the other device is grounded.

SPEAKER OUTPUTS (LOUT2 AND ROUT2)

The outputs LOUT2 and ROUT2 are designed to drive an 8Ω BTL speaker but can optionally drive two headphone loads of 16Ω/32Ω or a line output (see Headphone Output and Line Output sections, respectively). Each output has an individual volume control PGA, an output boost/level shift bit, a mute and an enable as shown in Figure 29. LOUT2 and ROUT2 output the left and right channel mixer outputs respectively.

The ROUT2 signal path also has an optional invert. The amplifier used for this invert can be used to mix in the AUXR signal with an adjustable gain range of -15dB -> +6dB. This allows a ‘beep’ signal to be applied only to the speaker output without affecting the HP or line outputs.
Figure 29 Speaker Outputs LOUT2 and ROUT2
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R54</td>
<td>7</td>
<td>LOUT2ZC</td>
<td>0</td>
<td>Speaker volume zero cross enable: 1 = Change gain on zero cross only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Change gain immediately</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>LOUT2MUTE</td>
<td>0</td>
<td>Left speaker output mute: 0 = Normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Mute</td>
</tr>
<tr>
<td></td>
<td>5:0</td>
<td>LOUT2VOL</td>
<td>111001</td>
<td>Left speaker output volume: 000000 = -57dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111001 = 0dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111111 = +6dB</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>SPKVU</td>
<td>Not latched</td>
<td>LOUT2 and ROUT2 volumes do not update until a 1 is written to SPKVU (in reg 54 or 55)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R55</td>
<td>7</td>
<td>ROUT2ZC</td>
<td>0</td>
<td>Speaker volume zero cross enable: 1 = Change gain on zero cross only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Change gain immediately</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>ROUT2MUTE</td>
<td>0</td>
<td>Right speaker output mute: 0 = Normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Mute</td>
</tr>
<tr>
<td></td>
<td>5:0</td>
<td>ROUT2VOL</td>
<td>111001</td>
<td>Right speaker output volume: 000000 = -57dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111001 = 0dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111111 = +6dB</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>SPKVU</td>
<td>Not latched</td>
<td>LOUT2 and ROUT2 volumes do not update until a 1 is written to SPKVU (in reg 54 or 55)</td>
</tr>
</tbody>
</table>

Table 40 Speaker Volume Control

The signal output on LOUT2/ROUT2 comes from the Left/Right Mixer circuits and can be any combination of the DAC output, the Bypass path (output of the input boost stage) and the AUX input. The LOUT2/ROUT2 volume is controlled by the LOUT2VOL/ROUT2VOL register bits. Gains over 0dB may cause clipping if the signal is large. The LOUT2MUTE/ROUT2MUTE register bits cause the speaker outputs to be muted (the output DC level is driven out). The output pins remain at the same DC level (DCOP), so that no click noise is produced when muting or un-muting.

The speaker output stages also have a selectable gain boost of 1.5x (3.52dB). When this boost is enabled the output DC level is also level shifted (from AVDD/2 to 1.5xAVDD/2) to prevent the signal from clipping. A dedicated amplifier BUFDCOP, as shown in Figure 30, is used to perform the DC level shift operation. This buffer must be enabled using the BUFDOPEN register bit for this operating mode. It should also be noted that if SPKVDD is not equal to or greater than 1.5xAVDD this boost mode may result in signals clipping. Table 42 summarises the effect of the SPKBOOST control bits.

Note: When boost mode is selected, it is necessary to set LOUT2MUTE (R54[6]) and ROUT2MUTE (R55[6]) bits for either output to be muted.
REGISTER ADDRESS

<table>
<thead>
<tr>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| 2 | SPKBOOST | 0 | 0 = speaker gain = -1; DC = AVDD / 2
| | | | 1 = speaker gain = +1.5; DC = 1.5 x AVDD / 2 |

Table 41 Speaker Boost Stage Control

<table>
<thead>
<tr>
<th>SPKBOOST</th>
<th>OUTPUT STAGE GAIN</th>
<th>OUTPUT DC LEVEL</th>
<th>OUTPUT STAGE CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1x (0dB)</td>
<td>AVDD/2</td>
<td>Inverting</td>
</tr>
<tr>
<td>1</td>
<td>1.5x (3.52dB)</td>
<td>1.5xAVDD/2</td>
<td>Non-inverting</td>
</tr>
</tbody>
</table>

Table 42 Output Boost Stage Details

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R43</td>
<td>5</td>
<td>MUTERPGA2INV</td>
<td>0</td>
<td>Mute input to INVROUT2 mixer</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>INVROUT2</td>
<td>0</td>
<td>Invert ROUT2 output</td>
</tr>
</tbody>
</table>
| | 3:1 | BEEPVOL | 000 | AUXR input to ROUT2 inverter gain 000 = -15dB...
| | | | | ... 111 = +6dB |
| | 0 | BEEPEN | 0 | 0 = mute AUXR beep input 1 = enable AUXR beep input |

Table 43 AUXR – ROUT2 BEEP Mixer Function

ZERO CROSS TIMEOUT

A zero-cross timeout function is also provided so that if zero cross is enabled on the input or output PGAs the gain will automatically update after a timeout period if a zero cross has not occurred. This is enabled by setting SLOWCLKEN. The timeout period is dependent on the clock input to the digital and is equal to $2^{21} \times$ input clock period.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7</td>
<td>0</td>
<td>SLOWCLKEN</td>
<td>0</td>
<td>Slow clock enable. Used for both the jack insert detect debounce circuit and the zero cross timeout. 0 = slow clock disabled 1 = slow clock enabled</td>
</tr>
</tbody>
</table>

Table 44 Timeout Clock Enable Control
OUT3/OUT4 MIXERS AND OUTPUT STAGES

The OUT3/OUT4 pins can provide an additional stereo line output, a mono output, or a pseudo ground connection for headphones. There is a dedicated analogue mixer for OUT3 and one for OUT4 as shown in Figure 31.

The OUT3 and OUT4 output stages are powered from SPKVDD and SPKGN. The individually controllable outputs also incorporate an optional 1.5x boost and level shifting stage.

Figure 31 OUT3 and OUT4 Mixers

OUT3 can provide a buffered midrail headphone pseudo-ground, or a left line output.

OUT4 can provide a buffered midrail headphone pseudo-ground, a right line output, or a mono mix output.
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R56</td>
<td>6</td>
<td>OUT3MUTE</td>
<td>0</td>
<td>0 = Output stage outputs OUT3 mixer control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Output stage muted – drives output VMID. Can be used as VMID buffer in this mode.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>OUT4_2OUT3</td>
<td>0</td>
<td>OUT4 mixer output to OUT3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BYPL2OUT3</td>
<td>0</td>
<td>Left ADC input to OUT3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>LMIX2OUT3</td>
<td>0</td>
<td>Left DAC mixer to OUT3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>LDAC2OUT3</td>
<td>1</td>
<td>Left DAC output to OUT3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td>R57</td>
<td>6</td>
<td>OUT4MUTE</td>
<td>0</td>
<td>0 = Output stage outputs OUT4 mixer control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Output stage muted – drives output VMID. Can be used as VMID buffer in this mode.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>HALFSIG</td>
<td>0</td>
<td>0=OUT4 normal output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=OUT4 attenuated by 6dB</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>LMIX2OUT4</td>
<td>0</td>
<td>Left DAC mixer to OUT4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>LDAC2OUT4</td>
<td>0</td>
<td>Left DAC to OUT4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BYPR2OUT4</td>
<td>0</td>
<td>Right ADC input to OUT4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>RMIX2OUT4</td>
<td>0</td>
<td>Right DAC mixer to OUT4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>RDAC2OUT4</td>
<td>1</td>
<td>Right DAC output to OUT4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enabled</td>
</tr>
</tbody>
</table>

Table 45 OUT3/OUT4 Mixer Registers

The OUT3 and OUT4 output stages each have a selectable gain boost of 1.5x (3.52dB). When this boost is enabled the output DC level is also level shifted (from AVDD/2 to 1.5xAVDD/2) to prevent the signal from clipping. A dedicated amplifier BUFDCOP, as shown in Figure 32, is used to perform the DC level shift operation. This buffer must be enabled using the BUFDCOPEN register bit for this operating mode. It should also be noted that if SPKVDD is not equal to or greater than 1.5xAVDD this boost mode may result in signals clipping. Table 42 summarises the effect of the OUT3BOOST and OUT4BOOST control bits.
Figure 33 Outputs OUT3 and OUT4

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R49</td>
<td>3</td>
<td>OUT3BOOST</td>
<td>0</td>
<td>0 = OUT3 output gain = -1; DC = AVDD / 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = OUT3 output gain = +1.5; DC = 1.5 x AVDD / 2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>OUT4BOOST</td>
<td>0</td>
<td>0 = OUT4 output gain = -1; DC = AVDD / 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = OUT4 output gain = +1.5; DC = 1.5 x AVDD / 2</td>
</tr>
<tr>
<td>R1</td>
<td>8</td>
<td>BUFDCOPEN</td>
<td>0</td>
<td>Dedicated buffer for DC level shifting output stages when in 1.5x gain boost configuration. 0=Buffer disabled 1=Buffer enabled (required for 1.5x gain boost)</td>
</tr>
</tbody>
</table>

Table 46 OUT3 and OUT4 Boost Stages Control

<table>
<thead>
<tr>
<th>OUT3BOOST/OUT4BOOST</th>
<th>OUTPUT STAGE GAIN</th>
<th>OUTPUT DC LEVEL</th>
<th>OUTPUT STAGE CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1x</td>
<td>AVDD/2</td>
<td>Inverting</td>
</tr>
<tr>
<td>1</td>
<td>1.5x</td>
<td>1.5xAVDD/2</td>
<td>Non-inverting</td>
</tr>
</tbody>
</table>

Table 47 OUT3/OUT4 Output Boost Stage Details
OUTPUT PHASING

The relative phases of the analogue outputs will depend upon the following factors:

1. DACPOL and DACPOLR invert bits: Setting these bits to 1 will invert the DAC output.

2. Mixer configuration: The polarity of the signal will depend upon the route through the mixer path. For example, DACL can be directly input to the OUT3 mixer, giving a 180° phase shift at the OUT3 mixer output. However, if DACL is input to the OUT3 mixer via the left mixer, an additional phase shift will be introduced, giving 0° phase shift at the OUT3 mixer output.

3. Output boost set-up: When 1.5x boost is enabled on an output, no phase shift occurs. When 1.5x boost is not enabled, a 180° phase shift occurs.

Figure 26 shows where these phase inversions can occur in the output signal path.
Table 48 shows the polarities of the outputs in various configurations.

Unless otherwise stated, polarity is shown with respect to left DAC output in non-inverting mode.

Note that only registers relating to the mixer paths are shown here (Mixer enables, volume settings, output enables etc are not shown).

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>DACPOL</th>
<th>DACPOLR</th>
<th>INVROUT2</th>
<th>SPIKBOOST</th>
<th>OUT3BOOST</th>
<th>OUT4BOOST</th>
<th>MIXER PATH REGISTERS DIFFERENT FROM DEFAULT</th>
<th>PHASE / MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default: Stereo DAC playback to LOUT1/ROUT1, LOUT2/ROUTE2 and OUT4/OUT3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>180°</td>
<td>180°</td>
<td></td>
</tr>
<tr>
<td>DACs inverted</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>180°</td>
<td>180°</td>
<td>180°</td>
<td>180°</td>
<td>0°</td>
<td>0°</td>
<td></td>
</tr>
<tr>
<td>Stereo DAC playback to LOUT1/ROUTE1 and LOUT2/ROUTE2 and OUT4/OUT3 (Speaker boost enabled)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td></td>
</tr>
<tr>
<td>Stereo DAC playback to LOUT1/ROUTE1 and LOUT2/ROUTE2 and OUT4/OUT3 (OUT3 and OUT4 boost enabled)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>180°</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>180°</td>
<td>180°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stereo playback to OUT3/OUT4 (DACs input to OUT3/OUT4 mixers via left/right mixers)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>LDAC2OUT3=0</td>
<td>RDAC2OUT4=0</td>
<td>LMIX2OUT3=1</td>
<td>RMIX2OUT4=1</td>
<td>180°</td>
<td>180°</td>
<td></td>
</tr>
</tbody>
</table>

| Differential output of right bypass path via OUT3/OUT4 (Phase shown relative to right bypass) | 0 | 0 | 0 | 0 | 0 | 0 | BYPR2OUT4=1 | OUT4_2OUT3=1 | 180° | 0° | X | X | X | X |

| Differential output of mono mix of DACs via LOUT2/ROUTE2 (e.g. BTL speaker drive) | 0 | 0 | 1 | 0 | 0 | 0 | 0° | 0° | 0° | 0° | 180° | 0° |

| High power speaker drive | 0 | 0 | 1 | 1 | 0 | 0 | 0° | 0° | 0° | 0° | 0° | 180° |

Table 48 Relative Output Phases

Note that differential output should not be set up by combining outputs in boost mode with outputs which are not in boost mode as this would cause a DC offset current on the outputs.
ENABLING THE OUTPUTS

Each analogue output of the WM8978 can be separately enabled or disabled. The analogue mixer associated with each output has a separate enable. All outputs are disabled by default. To save power, unused parts of the WM8978 should remain disabled.

Outputs can be enabled at any time, but it is not recommended to do so when BUFIO is disabled (BUFIOEN=0) or when BUFDCOP is disabled (BUFDCOPEN=0) when configured in output boost mode, as this may cause pop noise (see “Power Management” and “Applications Information” sections).

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 Power Management 1</td>
<td>2</td>
<td>BUFIOEN</td>
<td>0</td>
<td>Unused input/output tie off buffer enable</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>OUT3MIXEN</td>
<td>0</td>
<td>OUT3 mixer enable</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>OUT4MIXEN</td>
<td>0</td>
<td>OUT4 mixer enable</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>BUFDCOPEN</td>
<td>0</td>
<td>Output stage 1.5xAVDD/2 driver enable</td>
</tr>
<tr>
<td>R2 Power Management 2</td>
<td>8</td>
<td>ROUT1EN</td>
<td>0</td>
<td>ROUT1 output enable</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>LOUT1EN</td>
<td>0</td>
<td>LOUT1 output enable</td>
</tr>
<tr>
<td>R3 Power Management 3</td>
<td>2</td>
<td>LMIXEN</td>
<td>0</td>
<td>Left mixer enable</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>RMIXEN</td>
<td>0</td>
<td>Right mixer enable</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>ROUT2EN</td>
<td>0</td>
<td>ROUT2 output enable</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>LOUT2EN</td>
<td>0</td>
<td>LOUT2 output enable</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>OUT3EN</td>
<td>0</td>
<td>OUT3 enable</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>OUT4EN</td>
<td>0</td>
<td>OUT4 enable</td>
</tr>
</tbody>
</table>

Note: All “Enable” bits are 1 = ON, 0 = OFF

Table 49 Output Stages Power Management Control

THERMAL SHUTDOWN

The speaker outputs can drive very large currents. To protect the WM8978 from overheating a thermal shutdown circuit is included. If the device temperature reaches approximately 125°C and the thermal shutdown circuit is enabled (TSDEN=1) then the speaker amplifiers will be disabled if TSDEN is set. The thermal shutdown may also be configured to generate an interrupt. See the GPIO and Interrupt Controller section for details.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R49 Output control</td>
<td>1</td>
<td>TSDEN</td>
<td>1</td>
<td>Thermal Shutdown Enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 : thermal shutdown disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 : thermal shutdown enabled</td>
</tr>
</tbody>
</table>

Table 50 Thermal Shutdown

UNUSED ANALOGUE INPUTS/OUTPUTS

Whenever an analogue input/output is disabled, it remains connected to a voltage source (either AVDD/2 or 1.5xAVDD/2 as appropriate) through a resistor. This helps to prevent pop noise when the output is re-enabled. The resistance between the voltage buffer and the output pins can be controlled using the VROI control bit. The default impedance is low, so that any capacitors on the outputs can charge up quickly at start-up. If a high impedance is desired for disabled outputs, VROI can then be set to 1, increasing the resistance to about 30kΩ.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R49</td>
<td>0</td>
<td>VROI</td>
<td>0</td>
<td>VREF (AVDD/2 or 1.5xAVDD/2) to analogue output resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: approx 1kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: approx 30 kΩ</td>
</tr>
</tbody>
</table>

Table 51 Disabled Outputs to VREF Resistance
A dedicated buffer is available for tying off unused analogue I/O pins as shown in Figure 35. This buffer can be enabled using the BUFIOEN register bit.

If the SPKBOOST, OUT3BOOST or OUT4BOOST bits are set then the relevant outputs will be tied to the output of the DC level shift buffer at 1.5xAVDD/2 when disabled.

Figure 35 summarises the tie-off options for the speaker and mono output pins.

<table>
<thead>
<tr>
<th>L/ROUT2EN/OUT3/4EN</th>
<th>OUT3BOOST/OUT4BOOST/SPKBOOST</th>
<th>VROI</th>
<th>OUTPUT CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1kΩ tie-off to AVDD/2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>30kΩ tie-off to AVDD/2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1kΩ tie-off to 1.5xAVDD/2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>30kΩ tie-off to 1.5xAVDD/2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>Output enabled (DC level=AVDD/2)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>Output enabled (DC level=1.5xAVDD/2)</td>
</tr>
</tbody>
</table>
DIGITAL AUDIO INTERFACES

The audio interface has four pins:

- ADCDAT: ADC data output
- DACDAT: DAC data input
- LRC: Data Left/Right alignment clock
- BCLK: Bit clock, for synchronisation

The clock signals BCLK, and LRC can be outputs when the WM8978 operates as a master, or inputs when it is a slave (see Master and Slave Mode Operation, below).

Five different audio data formats are supported:

- Left justified
- Right justified
- I²S
- DSP mode A
- DSP mode B

All of these modes are MSB first. They are described in Audio Data Formats, below. Refer to the Electrical Characteristic section for timing information.

MASTER AND SLAVE MODE OPERATION

The WM8978 audio interface may be configured as either master or slave. As a master interface device the WM8978 generates BCLK and LRC and thus controls sequencing of the data transfer on ADCDAT and DACDAT. To set the device to master mode register bit MS should be set high. In slave mode (MS=0), the WM8978 responds with data to clocks it receives over the digital audio interfaces.

AUDIO DATA FORMATS

In Left Justified mode, the MSB is available on the first rising edge of BCLK following an LRC transition. The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles before each LRC transition.

Figure 36 Left Justified Audio Interface (assuming n-bit word length)
In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRC transition. All other bits are transmitted before (MSB first). Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles after each LRC transition.

![Right Justified Audio Interface (assuming n-bit word length)](image)

In I²S mode, the MSB is available on the second rising edge of BCLK following a LRC transition. The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles between the LSB of one sample and the MSB of the next.

![I²S Audio Interface (assuming n-bit word length)](image)
In DSP/PCM mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A) rising edge of BCLK (selectable by LRP) following a rising edge of LRC. Right channel data immediately follows left channel data. Depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles between the LSB of the right channel data and the next sample.

Figure 39 DSP/PCM Mode Audio Interface (mode A, LCRP=0)

Figure 40 DSP/PCM Mode Audio Interface (mode B, LCRP=1)
Audio Interface Control

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R4 Audio Interface Control</td>
<td>R4</td>
<td>MONO</td>
<td>0</td>
<td>Selects between stereo and mono device operation: 0=Stereo device operation, 1=Mono device operation. Data appears in 'left' phase of LRC.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ADCLRSWAP</td>
<td>0</td>
<td>Controls whether ADC data appears in 'right' or 'left' phases of LRC clock: 0=ADC data appear in 'left' phase of LRC, 1=ADC data appears in 'right' phase of LRC.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>DACLRSWAP</td>
<td>0</td>
<td>Controls whether DAC data appears in 'right' or 'left' phases of LRC clock: 0=DAC data appear in 'left' phase of LRC, 1=DAC data appears in 'right' phase of LRC.</td>
</tr>
<tr>
<td></td>
<td>4:3</td>
<td>FMT</td>
<td>10</td>
<td>Audio interface Data Format Select: 00=Right Justified, 01=Left Justified, 10=I2S format, 11= DSP/PCM mode.</td>
</tr>
<tr>
<td></td>
<td>6:5</td>
<td>WL</td>
<td>10</td>
<td>Word length: 00=16 bits, 01=20 bits, 10=24 bits, 11=32 bits (see note).</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>LRP</td>
<td></td>
<td>right, left and i2s modes – LRCLK polarity: 1 = invert LRCLK polarity, 0 = normal LRCLK polarity. DSP Mode – mode A/B select: 1 = MSB is available on 1st BCLK rising edge after LRC rising edge (mode B), 0 = MSB is available on 2nd BCLK rising edge after LRC rising edge (mode A).</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>BCP</td>
<td></td>
<td>BCLK polarity: 0=normal, 1=inverted.</td>
</tr>
</tbody>
</table>

Table 53 Audio Interface Control

ADCLRSWAP bit controls whether the ADC data appears in the right or left phase of the LRC clock as defined for each audio format. Similarly, DACLRSWAP can be used to swap the left DAC data from the left phase to the right phase of the LRC clock and the right DAC data from the right phase to the left phase of the LRC clock.

Note: Right Justified Mode will only operate with a maximum of 24 bits. If 32-bit mode is selected, the device will operate in 24-bit mode.

AUDIO INTERFACE CONTROL

The register bits controlling audio format, word length and master/slave mode are summarised below. The audio interfaces can be controlled individually.

Register bit MS selects audio interface operation in master or slave mode. In Master mode BCLK, and LRC are outputs. The frequency of BCLK in master mode are controlled with BCLKDIV. These are divided down versions of master clock.
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R6</td>
<td>0</td>
<td>MS</td>
<td>0</td>
<td>Sets the chip to be master over LRC and BCLK. 0=BCLK and LRC clock are inputs 1=BCLK and LRC clock are outputs generated by the WM8978 (MASTER)</td>
</tr>
<tr>
<td></td>
<td>4:2</td>
<td>BCLKDIV</td>
<td>000</td>
<td>Configures the BCLK output frequency, for use when the chip is master over BCLK. 000=divide by 1 (BCLK=SYSCLK) 001=divide by 2 (BCLK=SYSCLK/2) 010=divide by 4 011=divide by 8 100=divide by 16 101=divide by 32 110=reserved 111=reserved</td>
</tr>
<tr>
<td>7:5</td>
<td>MCLKDIV</td>
<td>010</td>
<td>Sets the scaling for either the MCLK or PLL clock output (under control of CLKSEL) 000=divide by 1 001=divide by 1.5 010=divide by 2 011=divide by 3 100=divide by 4 101=divide by 6 110=divide by 8 111=divide by 12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CLKSEL</td>
<td>1</td>
<td>Controls the source of the clock for all internal operation: 0=MCLK 1=PLL output</td>
<td></td>
</tr>
</tbody>
</table>

Table 54 Clock Control

The CLKSEL bit selects the internal source of the Master clock from the PLL (CLKSEL=1) or from MCLK (CLKSEL=0). When the internal clock is switched from one source to another using the CLKSEL bit, the clock originally selected must generate at least one falling edge after CLKSEL has changed for the switching of clocks to be successful.

EXAMPLE:

If the PLL is the current source of the internal clock (CLKSEL=1) and it is required to switch to the MCLK, change CLKSEL to select MCLK (CLKSEL=0) and then disable PLL (PLLEN=0).
AUDI0 SAMPLE RATES

The WM8978 sample rates for the ADCs and the DACs are set using the SR register bits. The
cutoffs for the digital filters and the ALC attack/decay times stated are determined using these values
and assume a 256fs master clock rate.

If a sample rate that is not explicitly supported by the SR register settings is required then the closest
SR value to that sample rate should be chosen, the filter characteristics and the ALC attack, decay
and hold times will scale appropriately.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| R7 | 3:1 | SR | 000 | Approximate sample rate (configures the coefficients for the internal digital filters):
| Additional Control | | | | 000=48kHz |
| | | | | 001=32kHz |
| | | | | 010=24kHz |
| | | | | 011=16kHz |
| | | | | 100=12kHz |
| | | | | 101=8kHz |
| | | | | 110-111=reserved |

Table 55 Sample Rate Control

MASTER CLOCK AND PHASE LOCKED LOOP (PLL)

The WM8978 has an on-chip phase-locked loop (PLL) circuit that can be used to:

Generate master clocks for the WM8978 audio functions from another external clock, e.g. in
telecoms applications.

Generate and output (on pin CSB/GPIO1 and/or GPIO4) a clock for another part of the system that is
derived from an existing audio master clock.

Figure 41 shows the PLL and internal clocking arrangement on the WM8978.

The PLL can be enabled or disabled by the PLLEN register bit.

Note: In order to minimise current consumption, the PLL is disabled when the VMIDSEL[1:0] bits are
set to 00b. VMIDSEL[1:0] must be set to a value other than 00b to enable the PLL.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>5</td>
<td>PLLEN</td>
<td>0</td>
<td>PLL enable</td>
</tr>
<tr>
<td>Power management 1</td>
<td></td>
<td></td>
<td></td>
<td>0=PLL off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=PLL on</td>
</tr>
</tbody>
</table>

Table 56 PLLEN Control Bit
The PLL frequency ratio \(R = f_2/f_1 \) (see Figure 41) can be set using the register bits PLLK and PLLN:

\[
PLLN = \text{int} \; R
\]

\[
PLLK = \text{int} \left(2^{24} \right) (R-PLLN)
\]

Note: The PLL is designed to operate with best performance (shortest lock time and optimum stability) when \(f_2 \) is between 90 and 100MHz and PLL_N is 8. However, acceptable PLL_N values lie in the range \(5 \leq \text{PLL}_N \leq 13 \). Do not use values outside this range and it is recommended that the chosen value of PLL_N is as close to 8 as possible for optimum performance.

EXAMPLE:

MCLK=12MHz, required clock = 12.288MHz.

\(R \) should be chosen to ensure \(5 < \text{PLL}_N < 13 \). There is a fixed divide by 4 in the PLL and a selectable divide by \(N \) after the PLL which should be set to divide by 2 to meet this requirement.

Enabling the divide by 2 sets the required \(f_2 = 4 \times 2 \times 12.288\text{MHz} = 98.304\text{MHz} \).

\[
R = 98.304 / 12 = 8.192
\]

\[
\text{PLLN} = \text{int} \; R = 8
\]

\[
k = \text{int} \left(2^{24} \times (8.192 - 8) \right) = 3221225 = 3126\text{E9h}
\]

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R36 PLL N value</td>
<td>4</td>
<td>PLLPRESCALE</td>
<td>0</td>
<td>0 = MCLK input not divided (default) 1 = Divide MCLK by 2 before input to PLL</td>
</tr>
<tr>
<td></td>
<td>3:0</td>
<td>PLLN</td>
<td>1000</td>
<td>Integer (N) part of PLL input/output frequency ratio. Use values greater than 5 and less than 13.</td>
</tr>
<tr>
<td>R37 PLL K value 1</td>
<td>5:0</td>
<td>PLLK [23:18]</td>
<td>0Ch</td>
<td>Fractional (K) part of PLL1 input/output frequency ratio (treat as one 24-digit binary number).</td>
</tr>
<tr>
<td>R38 PLL K Value 2</td>
<td>8:0</td>
<td>PLLK [17:9]</td>
<td>093h</td>
<td></td>
</tr>
<tr>
<td>R39 PLL K Value 3</td>
<td>8:0</td>
<td>PLLK [8:0]</td>
<td>0E9h</td>
<td></td>
</tr>
</tbody>
</table>

Table 57 PLL Frequency Ratio Control

The PLL performs best when \(f_2 \) is around 90MHz. Its stability peaks at \(N=8 \). Some example settings are shown in Table 58.
Table 58 PLL Frequency Examples

<table>
<thead>
<tr>
<th>MCLK (MHz)</th>
<th>DESIRED OUTPUT (MHz)</th>
<th>F2 (MHz)</th>
<th>PRESCALE DIVIDE</th>
<th>POSTSCALE DIVIDE</th>
<th>R</th>
<th>N (HEX)</th>
<th>K (HEX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>11.29</td>
<td>90.3168</td>
<td>1</td>
<td>2</td>
<td>7.5264</td>
<td>7</td>
<td>86C226</td>
</tr>
<tr>
<td>12</td>
<td>12.288</td>
<td>98.304</td>
<td>1</td>
<td>2</td>
<td>8.192</td>
<td>8</td>
<td>312E8</td>
</tr>
<tr>
<td>13</td>
<td>11.29</td>
<td>90.3168</td>
<td>1</td>
<td>2</td>
<td>6.947446</td>
<td>6</td>
<td>F28BD4</td>
</tr>
<tr>
<td>13</td>
<td>12.288</td>
<td>98.304</td>
<td>1</td>
<td>2</td>
<td>7.561846</td>
<td>7</td>
<td>8FD525</td>
</tr>
<tr>
<td>14.4</td>
<td>11.29</td>
<td>90.3168</td>
<td>1</td>
<td>2</td>
<td>6.272</td>
<td>6</td>
<td>45A1CA</td>
</tr>
<tr>
<td>14.4</td>
<td>12.288</td>
<td>98.304</td>
<td>1</td>
<td>2</td>
<td>6.826667</td>
<td>6</td>
<td>D3A06E</td>
</tr>
<tr>
<td>19.2</td>
<td>11.29</td>
<td>90.3168</td>
<td>2</td>
<td>2</td>
<td>9.408</td>
<td>9</td>
<td>6872AF</td>
</tr>
<tr>
<td>19.2</td>
<td>12.288</td>
<td>98.304</td>
<td>2</td>
<td>2</td>
<td>10.24</td>
<td>A</td>
<td>3D70A3</td>
</tr>
<tr>
<td>19.68</td>
<td>11.29</td>
<td>90.3168</td>
<td>2</td>
<td>2</td>
<td>9.178537</td>
<td>9</td>
<td>2DB492</td>
</tr>
<tr>
<td>19.68</td>
<td>12.288</td>
<td>98.304</td>
<td>2</td>
<td>2</td>
<td>9.990243</td>
<td>9</td>
<td>FD809F</td>
</tr>
<tr>
<td>19.8</td>
<td>11.29</td>
<td>90.3168</td>
<td>2</td>
<td>2</td>
<td>9.122909</td>
<td>9</td>
<td>1F76F7</td>
</tr>
<tr>
<td>19.8</td>
<td>12.288</td>
<td>98.304</td>
<td>2</td>
<td>2</td>
<td>9.929697</td>
<td>9</td>
<td>EE09E</td>
</tr>
<tr>
<td>24</td>
<td>11.29</td>
<td>90.3168</td>
<td>2</td>
<td>2</td>
<td>7.5264</td>
<td>7</td>
<td>86C226</td>
</tr>
<tr>
<td>24</td>
<td>12.288</td>
<td>98.304</td>
<td>2</td>
<td>2</td>
<td>8.192</td>
<td>8</td>
<td>312E8</td>
</tr>
<tr>
<td>26</td>
<td>11.29</td>
<td>90.3168</td>
<td>2</td>
<td>2</td>
<td>6.947446</td>
<td>6</td>
<td>F28BD4</td>
</tr>
<tr>
<td>26</td>
<td>12.288</td>
<td>98.304</td>
<td>2</td>
<td>2</td>
<td>7.561846</td>
<td>7</td>
<td>8FD525</td>
</tr>
<tr>
<td>27</td>
<td>11.29</td>
<td>90.3168</td>
<td>2</td>
<td>2</td>
<td>6.690133</td>
<td>6</td>
<td>BOAC93</td>
</tr>
<tr>
<td>27</td>
<td>12.288</td>
<td>98.304</td>
<td>2</td>
<td>2</td>
<td>7.281778</td>
<td>7</td>
<td>482296</td>
</tr>
</tbody>
</table>

LOOPBACK

Setting the LOOPBACK register bit enables digital loopback. When this bit is set the output data from the ADC audio interface is fed directly into the DAC data input.

COMPANDING

The WM8978 supports A-law and μ-law and companding and linear mode on both transmit (ADC) and receive (DAC) sides. Companding can be enabled on the DAC or ADC audio interfaces by writing the appropriate value to the DAC_COMP or ADC_COMP register bits respectively.
REGISTER ADDRESS

<table>
<thead>
<tr>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LOOPBACK</td>
<td>0</td>
<td>Digital loopback function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0=No loopback</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=Loopback enabled. ADC data output is fed directly into DAC data input.</td>
</tr>
<tr>
<td>2:1</td>
<td>ADC_COMP</td>
<td>0</td>
<td>ADC companding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00=off (linear mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01=reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10=µ-law</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11=A-law</td>
</tr>
<tr>
<td>4:3</td>
<td>DAC_COMP</td>
<td>0</td>
<td>DAC companding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00=off (linear mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01=reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10=µ-law</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11=A-law</td>
</tr>
<tr>
<td>5</td>
<td>WL8</td>
<td>0</td>
<td>0=off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=device operates in 8-bit mode</td>
</tr>
</tbody>
</table>

Table 59 Companding Control

Companding involves using a piecewise linear approximation of the following equations (as set out by ITU-T G.711 standard) for data compression:

- **µ-law** (where \(\mu = 255 \) for the U.S. and Japan):

 \[
 F(x) = \frac{\ln(1 + \mu|x|)}{\ln(1 + \mu)} \quad -1 \leq x \leq 4
 \]

- **A-law** (where \(A = 87.6 \) for Europe):

 \[
 \begin{align*}
 F(x) &= \frac{A|x|}{1 + \ln A} & \text{for } x \leq 1/A \\
 F(x) &= \frac{1 + \ln A|x|}{1 + \ln A} & \text{for } 1/A \leq x \leq 1
 \end{align*}
 \]

The companded data is also inverted as recommended by the G.711 standard (all 8 bits are inverted for µ-law, all even data bits are inverted for A-law). The data will be transmitted as the first 8 MSB's of data.

Companding converts 13 bits (µ-law) or 12 bits (A-law) to 8 bits using non-linear quantization. The input data range is separated into 8 levels, allowing low amplitude signals better precision than that of high amplitude signals. This is to exploit the operation of the human auditory system, where louder sounds do not require as much resolution as quieter sounds. The companded signal is an 8-bit word containing sign (1-bit), exponent (3-bits) and mantissa (4-bits).

Setting the WL8 register bit allows the device to operate with 8-bit data. In this mode it is possible to use 8 BCLK's per LRC frame. When using DSP mode B, this allows 8-bit data words to be output consecutively every 8 BCLK's and can be used with 8-bit data words using the A-law and u-law companding functions.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGN</td>
<td>EXPONENT</td>
<td>MANTISSA</td>
</tr>
</tbody>
</table>

Table 60 8-bit Companded Word Composition
GENERAL PURPOSE INPUT/OUTPUT

The WM8978 has three dual purpose input/output pins.

- CSB/GPIO1: CSB / GPIO pin
- L2/GPIO2: Left channel line input / headphone detection input
- R2/GPIO3: Right channel line input / headphone detection input

The GPIO2 and GPIO3 functions are provided for use as jack detection inputs.
The GPIO1 function is provided for use as a jack detection input or a general purpose output.
The default configuration for the CSB/GPIO1 pin is to be an input.

When setup as an input, the CSB/GPIO1 pin can either be used as CSB or for jack detection, depending on how the MODE pin is set.

Table 49 illustrates the functionality of the GPIO1 pin when used as a general purpose output.

Figure 42 u-Law Companding

Figure 43 A-Law Companding
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8</td>
<td>2:0</td>
<td>GPIO1SEL</td>
<td>000</td>
<td>CSB/GPIO1 pin function select:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000= input (CSB/jack detection: depending on MODE setting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001= reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>010=Temp ok</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>011=Amute active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100=PLL clk o/p</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101=PLL lock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110=logic 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111=logic 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 GPIO1POL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 GPIO1 Polarity invert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=Non inverted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=Inverted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5:4 OPCLKDIV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 PLL Output clock division ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00=divide by 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01=divide by 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10=divide by 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11=divide by 4</td>
</tr>
</tbody>
</table>

Table 61 CSB/GPIO Control

Note: If MODE is set to 3 wire mode, CSB/GPIO1 shall be used as CSB input irrespective of the GPIO1SEL[2:] bits.

Note that SLOWCLKEN must be enabled when using the Jack Detect function.

For further details of the Jack detect operation see the OUTPUT SWITCHING section.

OUTPUT SWITCHING (JACK DETECT)

When the device is operated using a 2-wire interface the CSB/GPIO1 pin can be used as a switch control input to automatically disable one set of outputs and enable another the most common use for this functionality is as jack detect circuitry. The L2/GPIO2 and R2/GPIO3 pins can also be used for this purpose.

The GPIO pins have an internal de-bounce circuit when in this mode in order to prevent the output enables from toggling multiple times due to input glitches. This de-bounce circuit is clocked from a slow clock with period $2^{21} \times MCLK$ and is enabled by the SLOWCLKEN bit.

Notes:

1. The SLOWCLKEN bit must be enabled for the jack detect circuitry to operate.
2. The GPIOPOL bit is not relevant for jack detection, it is the signal detected at the pin which is used

Switching on/off of the outputs is fully configurable by the user. Each output, OUT1, OUT2, OUT3 and OUT4 has 2 associated enables. OUT1_EN_0, OUT2_EN_0, OUT3_EN_0 and OUT4_EN_0 are the output enable signals which are used if the selected jack detection pin is at logic 0 (after de-bounce). OUT1_EN_1, OUT2_EN_1, OUT3_EN_1 and OUT4_EN_1 are the output enable signals which are used if the selected jack detection pin is at logic 1 (after de-bounce).

The jack detection enables operate as follows:

All OUT_EN signals have an AND function performed with their normal enable signals (in Table 49). When an output is normally enabled at per Table 51, the selected jack detection enable (controlled by selected jack detection pin polarity) is set 0; it will turn the output off. If the normal enable signal is already OFF (0), the jack detection signal will have no effect due to the AND function.

During jack detection if the user desires an output to be un-changed whether the jack is in or not, both the JD_EN settings i.e. JD_EN0 and JD_EN1, should be set to 0000.
The VMID_EN signal has an OR function performed with the normal VMID driver enable. If the VMID_EN signal is to have no effect to normal functionality when jack detection is enabled, it should set to 0 for all JD_EN0 or JD_EN1 settings.

If jack detection is not enabled (JD_EN=0), the output enables default to all 1’s, allowing the outputs to be controlled as normal via the normal output enables found in Table 49.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R9 GPIO control</td>
<td>5:4</td>
<td>JD_SEL</td>
<td>00</td>
<td>Pin selected as jack detection input 00 = GPIO1, 01 = GPIO2, 10 = GPIO3, 11 = Reserved</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>JD_EN</td>
<td>0</td>
<td>Jack Detection Enable 0 = disabled, 1 = enabled</td>
</tr>
<tr>
<td></td>
<td>8:7</td>
<td>JD_VMID</td>
<td>00</td>
<td>[7] VMID_EN_0 [8] VMID_EN_1</td>
</tr>
<tr>
<td>R13</td>
<td>3:0</td>
<td>JD_EN0</td>
<td>0000</td>
<td>Output enables when selected jack detection input is logic 0. [0]= OUT1_EN_0 [1]= OUT2_EN_0 [2]= OUT3_EN_0 [3]= OUT4_EN_0</td>
</tr>
</tbody>
</table>

Table 62 Jack Detect Register Control Bits
CONTROL INTERFACE

SELECTION OF CONTROL MODE AND 2-WIRE MODE ADDRESS

The control interface can operate as either a 3-wire or 2-wire MPU interface. The MODE pin determines the 2 or 3 wire mode as shown in Table 63.

The WM8978 is controlled by writing to registers through a serial control interface. A control word consists of 16 bits. The first 7 bits (B15 to B9) are address bits that select which control register is accessed. The remaining 9 bits (B8 to B0) are register bits, corresponding to the 9 bits in each control register.

<table>
<thead>
<tr>
<th>MODE</th>
<th>INTERFACE FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>2 wire</td>
</tr>
<tr>
<td>High</td>
<td>3 wire</td>
</tr>
</tbody>
</table>

Table 63 Control Interface Mode Selection

3-WIRE SERIAL CONTROL MODE

In 3-wire mode, every rising edge of SCLK clocks in one data bit from the SDIN pin. A rising edge on CSB/GPIO1 pin latches in a complete control word consisting of the last 16 bits.

2-WIRE SERIAL CONTROL MODE

The WM8978 supports software control via a 2-wire serial bus. Many devices can be controlled by the same bus, and each device has a unique 7-bit device address (this is not the same as the 7-bit address of each register in the WM8978).

The WM8978 operates as a slave 2-wire device only. The controller indicates the start of data transfer with a high to low transition on SDIN while SCLK remains high. This indicates that a device address and data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address received matches the address of the WM8978, then the WM8978 responds by pulling SDIN low on the next clock pulse (ACK). If the address is not recognised or the R/W bit is ‘1’ when operating in write only mode, the WM8978 returns to the idle condition and wait for a new start condition and valid address.

During a write, once the WM8978 has acknowledged a correct address, the controller sends the first byte of control data (B15 to B8, i.e. the WM8978 register address plus the first bit of register data). The WM8978 then acknowledges the first data byte by pulling SDIN low for one clock pulse. The controller then sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register data), and the WM8978 acknowledges again by pulling SDIN low.

Transfers are complete when there is a low to high transition on SDIN while SCLK is high. After a complete sequence the WM8978 returns to the idle state and waits for another start condition. If a start or stop condition is detected out of sequence at any point during data transfer (i.e. SDIN changes while SCLK is high), the device jumps to the idle condition.

Figure 44 3-Wire Serial Control Interface

Figure 45 2-Wire Serial Control Interface
In 2-wire mode the WM8978 has a fixed device address, 0011010.

RESETTING THE CHIP

The WM8978 can be reset by performing a write of any value to the software reset register (address 0 hex). This will cause all register values to be reset to their default values. In addition to this there is a Power-On Reset (POR) circuit which ensures that the registers are set to default when the device is powered up.

POWER SUPPLIES

The WM8978 can use up to five separate power supplies:

AVDD and AGND: Analogue supply, powers all analogue functions except the speaker output and mono output drivers. AVDD can range from 2.5V to 3.6V and has the most significant impact on overall power consumption (except for power consumed in the headphone). A large AVDD slightly improves audio quality.

SPKVDD and SPKGND: Headphone and Speaker supplies, power the speaker and mono output drivers. SPKVDD can range from 2.5V to 5V. SPKVDD can be tied to AVDD, but it requires separate layout and decoupling capacitors to curb harmonic distortion. With a larger SPKVDD, louder headphone and speaker outputs can be achieved with lower distortion. If SPKVDD is lower than AVDD, the output signal may be clipped.

DCVDD: Digital core supply, powers all digital functions except the audio and control interfaces. DCVDD can range from 1.71V to 3.6V, and has no effect on audio quality. The return path for DCVDD is DGND, which is shared with DBVDD.

DBVDD can range from 1.71V to 3.6V. DBVDD return path is through DGND.

It is possible to use the same supply voltage for all four supplies. However, digital and analogue supplies should be routed and decoupled separately on the PCB to keep digital switching noise out of the analogue signal paths.

DCVDD should be greater than or equal to 1.9V when using the PLL.

RECOMMENDED POWER UP/DOWN SEQUENCE

In order to minimise output pop and click noise, it is recommended that the WM8978 device is powered up and down using one of the following sequences:

Power-up when NOT using the output 1.5x boost stage:

1. Turn on external power supplies. Wait for supply voltage to settle.
2. Mute all analogue outputs.
3. Set L/RMIXEN = 1 and DACENL/R = 1 in register R3.
5. Set BIASEN = 1 in register R1.
6. Set L/ROUT1EN = 1 in register R2.
7. Enable other mixers as required.
8. Enable other outputs as required.
9. Set remaining registers.
Power-up when using the output 1.5x boost stage:

1. Turn on external power supplies. Wait for supply voltage to settle.
2. Mute all analogue outputs.
3. Enable unused output chosen from L/ROUTE2, OUT3 or OUT4. If unused output not available, chose one of these outputs not required at power up.
4. Set BUFDCOPEN = 1 and BUFIOEN = 1 in register R1.
5. Set SPKBOOST = 1 in register R49.
7. Set L/RMIXEN = 1 and DACENL/R = 1 in register R3.
8. Set BIASEN = 1 in register R1.
10. Enable other mixers as required.
11. Enable other outputs as required.
12. Set remaining registers.

Power Down (all cases):

2. Mute all analogue outputs.
3. Disable Power Management Register 1. R1 = 0x00.
4. Disable Power Management Register 2. R2 = 0x00.
5. Disable Power Management Register 3. R3 = 0x00.
6. Remove external power supplies.
Notes:

1. This step enables the internal device bias buffer and the VMID buffer for unassigned inputs/outputs. This will provide a startup reference voltage for all inputs and outputs. This will cause the inputs and outputs to ramp towards VMID (NOT using output 1.5x boost) or 1.5 x (AVDD/2) (using output 1.5x boost) in a way that is controlled and predictable (see note 2).

2. Choose the value of the VMIDSEL bits based on the startup time (VMIDSEL=10 for slowest startup, VMIDSEL=11 for fastest startup). Startup time is defined by the value of the VMIDSEL bits (the reference impedance) and the external decoupling capacitor on VMID.

3. Setting DACEN off while operating in x1.5 boost mode will cause the VMID voltage to drop to AVDD/2 midrail level and cause an output pop.

In addition to the power on sequence, it is recommended that the zero cross functions are used when changing the volume in the PGAs to avoid any audible pops or clicks.

Figure 46 ADC Power Up and Down Sequence (not to scale)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYPICAL</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{midrail_on}</td>
<td>500</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{midrail_off}</td>
<td>>10</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC Group Delay</td>
<td>2/fs</td>
<td>n/fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 64 Typical POR Operation (typical simulated values)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes:

1. The analogue input pin charge time, $t_{\text{midrail, on}}$, is determined by the VMID pin charge time. This time is dependent upon the value of VMID decoupling capacitor and VMID pin input resistance and AVDD power supply rise time.

2. The analogue input pin discharge time, $t_{\text{midrail, off}}$, is determined by the analogue input coupling capacitor discharge time. The time, $t_{\text{midrail, off}}$, is measured using a 1μF capacitor on the analogue input but will vary dependent upon the value of input coupling capacitor.

3. While the ADC is enabled there will be LSB data bit activity on the ADCDAT pin due to system noise but no significant digital output will be present.

4. The VMIDSEL and BIASN bits must be set to enable analogue input midrail voltage and for normal ADC operation.

5. ADCDAT data output delay from power down - with power supplies starting from −V - is determined primarily by the VMID charge time. ADC initialisation and power management bits may be set immediately after POR is released; VMID charge time will be significantly longer and will dictate when the device is stabilised for analogue input.

6. ADCDAT data output delay at power up from device standby (power supplies already applied) is determined by ADC initialisation time, 2/fs.

Figure 47 DAC Power Up and Down Sequence (not to scale)
<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYPICAL</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>tline_midrail_on</td>
<td>500</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tline_midrail_off</td>
<td>1</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thp_midrail_on</td>
<td>500</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thp_midrail_off</td>
<td>6</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tdacint</td>
<td>2/fs</td>
<td>n/fs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 65 Typical POR Operation (typical simulated values)

Notes:

1. The lineout charge time, \(t_{\text{line_midrail_on}} \), is mainly determined by the VMID pin charge time. This time is dependent upon the value of VMID decoupling capacitor and VMID pin input resistance and AVDD power supply rise time. The values above were measured using a 4.7\(\mu \)F capacitor.

2. It is not advisable to allow DACDAT data input during initialisation of the DAC. If the DAC data value is not zero at point of initialisation, then this is likely to cause a pop noise on the analogue outputs. The same is also true if the DACDAT is removed at a non-zero value, and no mute function has been applied to the signal beforehand.

3. The lineout discharge time, \(t_{\text{line_midrail_off}} \), is dependent upon the value of the lineout coupling capacitor and the leakage resistance path to ground. The values above were measured using a 10\(\mu \)F output capacitor.

4. The headphone charge time, \(t_{\text{hp_midrail_on}} \), is dependent upon the value of VMID decoupling capacitor and VMID pin input resistance and AVDD power supply rise time. The values above were measured using a 4.7\(\mu \)F VMID decoupling capacitor.

5. The headphone discharge time, \(t_{\text{hp_midrail_off}} \), is dependent upon the value of the headphone coupling capacitor and the leakage resistance path to ground. The values above were measured using a 100\(\mu \)F capacitor.

6. The VMIDSEL and BIASEN bits must be set to enable analogue output midrail voltage and for normal DAC operation.
SAVING POWER BY REDUCING OVERSAMPLING RATE

The default mode of operation of the ADC and DAC digital filters is in 64x oversampling mode. Under the control of ADCOSR and DACOSR the oversampling rate may be doubled. 64x oversampling results in a slight decrease in noise performance compared to 128x but lowers the power consumption of the device.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10 DAC control</td>
<td>3</td>
<td>DACOSR128</td>
<td>0</td>
<td>DAC oversample rate select 0 = 64x (lowest power)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = 128x (best SNR)</td>
</tr>
<tr>
<td>R14 ADC control</td>
<td>3</td>
<td>ADCOSR128</td>
<td>0</td>
<td>ADC oversample rate select 0 = 64x (lowest power)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = 128x (best SNR)</td>
</tr>
</tbody>
</table>

Table 66 ADC and DAC Oversampling Rate Selection

VMID

The analogue circuitry will not work when VMID is disabled (VMIDSEL[1:0] = 00b). The impedance of the VMID resistor string, together with the decoupling capacitor on the VMID pin will determine the startup time of the VMID circuit.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 Power</td>
<td>1:0</td>
<td>VMIDSEL</td>
<td>00</td>
<td>Reference string impedance to VMID pin</td>
</tr>
<tr>
<td>management 1</td>
<td></td>
<td></td>
<td></td>
<td>(recommended startup time):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00=off (open circuit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01=75kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10=300kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11=5kΩ (for fastest startup)</td>
</tr>
</tbody>
</table>

Table 67 VMID Impedance Control

BIASEN

The analogue amplifiers will not operate unless BIASEN is enabled.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 Power</td>
<td>3</td>
<td>BIASEN</td>
<td>0</td>
<td>Analogue amplifier bias control</td>
</tr>
<tr>
<td>management 1</td>
<td></td>
<td></td>
<td></td>
<td>0=disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=enabled</td>
</tr>
</tbody>
</table>

Table 68 Analogue Bias Control
REGISTER MAP

<table>
<thead>
<tr>
<th>ADDR B[15:9]</th>
<th>REGISTER NAME</th>
<th>B8</th>
<th>B7</th>
<th>B6</th>
<th>B5</th>
<th>B4</th>
<th>B3</th>
<th>B2</th>
<th>B1</th>
<th>B0</th>
<th>DEF'T VAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 00</td>
<td>Software Reset</td>
<td>Software reset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000</td>
</tr>
<tr>
<td>1 01</td>
<td>Power manage't 1</td>
<td>BUFDCOP</td>
<td>OUT4MIX</td>
<td>OUT3MIX</td>
<td>PLLEN</td>
<td>MCBEN</td>
<td>BIASEN</td>
<td>BUFIOEN</td>
<td>VMIDSEL</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>2 02</td>
<td>Power manage't 2</td>
<td>ROUT1EN</td>
<td>LOUT1EN</td>
<td>SLEEP</td>
<td>BOOST</td>
<td>BOOST</td>
<td>INPPGA</td>
<td>INPPGA</td>
<td>ADCENR</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>3 03</td>
<td>Power manage't 3</td>
<td>OUT4EN</td>
<td>OUT3EN</td>
<td>LOUT2EN</td>
<td>ROUTEN</td>
<td>0</td>
<td>MIXEN</td>
<td>MIXEN</td>
<td>DACENR</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>4 04</td>
<td>Audio Interface</td>
<td>BCP</td>
<td>LRP</td>
<td>WL</td>
<td>FMT</td>
<td>DAC</td>
<td>LRSWAP</td>
<td>DAC</td>
<td>LRSWAP</td>
<td>MONO</td>
<td>050</td>
</tr>
<tr>
<td>5 05</td>
<td>Comping ctrl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>WL8</td>
<td>DAC_COMP</td>
<td>DAC_COMP</td>
<td>LOOPBACK</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>6 06</td>
<td>Clock Gen ctrl</td>
<td>CLKSEL</td>
<td>MCLKDIV</td>
<td>BCLKDIV</td>
<td>0</td>
<td>MS</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 07</td>
<td>Additional ctrl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SR</td>
<td>SLOWCLKE</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 08</td>
<td>GPIO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>OPCLKDIV</td>
<td>GPIO1POL</td>
<td>GPIO1SEL[2:0]</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 09</td>
<td>Jack detect control</td>
<td>JD_VMID</td>
<td>JD_EN</td>
<td>JD_SEL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>10 0A</td>
<td>DAC Control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SOFT</td>
<td>MUTE</td>
<td>0</td>
<td>0</td>
<td>DACOSR</td>
<td>128</td>
</tr>
<tr>
<td>11 0B</td>
<td>Left DAC digital Vol</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>0FF</td>
</tr>
<tr>
<td>12 0C</td>
<td>Right DAC digital Vol</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>0FF</td>
</tr>
<tr>
<td>13 0D</td>
<td>Jack Detect Control</td>
<td>JD_EN1</td>
<td>JD_EN0</td>
<td>JD_SEL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>14 0E</td>
<td>ADC Control</td>
<td>HPFEN</td>
<td>HPFAPP</td>
<td>HPFCUT</td>
<td>ADCOSR</td>
<td>128</td>
<td>ADRCPOL</td>
<td>ADCLPOL</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 0F</td>
<td>Left ADC Digital Vol</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>0FF</td>
</tr>
<tr>
<td>16 10</td>
<td>Right ADC Digital Vol</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>DAVCU</td>
<td>0FF</td>
</tr>
<tr>
<td>17 12</td>
<td>EQ1 – low shelf</td>
<td>EQ3MODE</td>
<td>0</td>
<td>EQ1C</td>
<td>EQ1G</td>
<td>12C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 13</td>
<td>EQ2 – peak 1</td>
<td>EQ2BW</td>
<td>0</td>
<td>EQ2C</td>
<td>EQ2G</td>
<td>02C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 14</td>
<td>EQ3 – peak 2</td>
<td>EQ3BW</td>
<td>0</td>
<td>EQ3C</td>
<td>EQ3G</td>
<td>02C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 15</td>
<td>EQ4 – peak 3</td>
<td>EQ4BW</td>
<td>0</td>
<td>EQ4C</td>
<td>EQ4G</td>
<td>02C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 16</td>
<td>EQ5 – high shelf</td>
<td>0</td>
<td>0</td>
<td>EQ5C</td>
<td>EQ5G</td>
<td>02C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 18</td>
<td>DAC Limiter 1</td>
<td>LIMEN</td>
<td>LIMDCY</td>
<td>LIMATK</td>
<td>032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 19</td>
<td>DAC Limiter 2</td>
<td>0</td>
<td>0</td>
<td>LIMLV</td>
<td>LIMBOOST</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 1B</td>
<td>Notch Filter 1</td>
<td>NFU</td>
<td>NFEN</td>
<td>NFA[13:7]</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 1C</td>
<td>Notch Filter 2</td>
<td>NFU</td>
<td>0</td>
<td>NFA[6:0]</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 1D</td>
<td>Notch Filter 3</td>
<td>NFU</td>
<td>0</td>
<td>NFA[13:7]</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 1E</td>
<td>Notch Filter 4</td>
<td>NFU</td>
<td>0</td>
<td>NFA[6:0]</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 20</td>
<td>ALC control 1</td>
<td>ALCSEL</td>
<td>0</td>
<td>ALCMAXGAIN</td>
<td>ALCMINGAIN</td>
<td>038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 21</td>
<td>ALC control 2</td>
<td>0</td>
<td>ALCHLD</td>
<td>ALCVL</td>
<td>00B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 22</td>
<td>ALC control 3</td>
<td>ALCMODE</td>
<td>ALCDCY</td>
<td>ALCATK</td>
<td>032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 23</td>
<td>Noise Gate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NGEN</td>
<td>NGTH</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 24</td>
<td>PLL N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>PLLPRE</td>
<td>SCALE</td>
<td>008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 25</td>
<td>PLL K 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>PLLU[23:18]</td>
<td>00C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 26</td>
<td>PLL K 2</td>
<td>PLLK[17:9]</td>
<td>093</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 27</td>
<td>PLL K 3</td>
<td>PLLK[8:0]</td>
<td>0E9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 29</td>
<td>3D control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DEPTH3D</td>
<td></td>
<td>000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 2B</td>
<td>Beep control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>MUTE</td>
<td>PGA2INV</td>
<td>INVROUT2</td>
<td>BEEPVOL</td>
<td>BEEPEN</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>38 2C</td>
<td>Input ctrl</td>
<td>MBVSEL</td>
<td>0</td>
<td>R2_2</td>
<td>RINZ</td>
<td>R2P</td>
<td>INPPGA</td>
<td>L2_2</td>
<td>INPPGA</td>
<td>LIP2</td>
<td>INPPGA</td>
</tr>
<tr>
<td>ADDR</td>
<td>REGISTER NAME</td>
<td>B8</td>
<td>B7</td>
<td>B6</td>
<td>B5</td>
<td>B4</td>
<td>B3</td>
<td>B2</td>
<td>B1</td>
<td>B0</td>
<td>DEFT VAL</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEC</td>
<td>HEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(HEX)</td>
</tr>
<tr>
<td>45</td>
<td>Left INP PGA gain ctrl</td>
<td>INPPGA UPDATE</td>
<td>INPPGAZOCL</td>
<td>INPPGA MUTE</td>
<td>INPPGAVOLL</td>
<td>010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Right INP PGA gain ctrl</td>
<td>INPPGA UPDATE</td>
<td>INPPGAZOOR</td>
<td>INPPGA MUTE</td>
<td>INPPGAVOLR</td>
<td>010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Left ADC Boost ctrl</td>
<td>PGABOOSTL</td>
<td>L2_2BOOSTVOL</td>
<td>0</td>
<td>AUXL2BOOSTVOL</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Right ADC Boost ctrl</td>
<td>PGABOOSTR</td>
<td>R2_2BOOSTVOL</td>
<td>0</td>
<td>AUXR2BOOSTVOL</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Output ctrl</td>
<td>0</td>
<td>0</td>
<td>DACL2RMIX</td>
<td>DACR2LMIX</td>
<td>OUT4BOOST</td>
<td>OUT3BOOST</td>
<td>SPKBOOST</td>
<td>TSDEN</td>
<td>VROI</td>
<td>002</td>
</tr>
<tr>
<td>50</td>
<td>Left mixer ctrl</td>
<td>AUXLMIXVOL</td>
<td>AUXL2LMIX</td>
<td>0</td>
<td>BYPLMIXVOL</td>
<td>BYPL2LMIX</td>
<td>DACL2LMIX</td>
<td>001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Right mixer ctrl</td>
<td>AUXRMIXVOL</td>
<td>AUXR2RMIX</td>
<td>0</td>
<td>BYPRMIXVOL</td>
<td>BYPR2LMIX</td>
<td>DACR2RMIX</td>
<td>001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>LOUT1 (HP) volume ctrl</td>
<td>HPVU</td>
<td>LOUT1ZC</td>
<td>LOUT1MUTE</td>
<td>LOUT1VOL</td>
<td>039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>ROUT1 (HP) volume ctrl</td>
<td>HPVU</td>
<td>ROUT1ZC</td>
<td>ROUT1MUTE</td>
<td>ROUT1VOL</td>
<td>039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>LOUT2 (SPK) volume ctrl</td>
<td>SPKVU</td>
<td>LOUT2ZC</td>
<td>LOUT2MUTE</td>
<td>LOUT2VOL</td>
<td>039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>ROUT2 (SPK) volume ctrl</td>
<td>SPKVU</td>
<td>ROUT2ZC</td>
<td>ROUT2MUTE</td>
<td>ROUT2VOL</td>
<td>039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>OUT3 mixer ctrl</td>
<td>0</td>
<td>0</td>
<td>OUT3MUTE</td>
<td>0</td>
<td>OUT4_2OUT3</td>
<td>BYPL2OUT3</td>
<td>LMIX2OUT3</td>
<td>LDAC2OUT3</td>
<td>001</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>OUT4 (MONO) mixer ctrl</td>
<td>0</td>
<td>0</td>
<td>OUT4MUTE</td>
<td>HALFSIG</td>
<td>LMIX2OUT4</td>
<td>LDAC2OUT4</td>
<td>BYPR2OUT4</td>
<td>RMIX2OUT4</td>
<td>001</td>
<td></td>
</tr>
</tbody>
</table>

Table 69 WM8978 Register Map
REGISTER BITS BY ADDRESS

Notes:
1. Default values of N/A indicate non-latched data bits (e.g. software reset or volume update bits).
2. Register bits marked as “Reserved” should not be changed from the default.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (00h)</td>
<td>[8:0]</td>
<td>RESET</td>
<td>N/A</td>
<td>Software reset</td>
<td>Resetting the Chip</td>
</tr>
<tr>
<td>1 (01h)</td>
<td>8</td>
<td>BUFDCOPEN</td>
<td>0</td>
<td>Dedicated buffer for DC level shifting output stages when in 1.5x gain boost configuration. 0=Buffer disabled 1=Buffer enabled (required for 1.5x gain boost)</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>OUT4MIXEN</td>
<td>0</td>
<td>OUT4 mixer enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>OUT3MIXEN</td>
<td>0</td>
<td>OUT3 mixer enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>PLLLEN</td>
<td>0</td>
<td>PLL enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>MICBEN</td>
<td>0</td>
<td>Microphone Bias Enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>BIASEN</td>
<td>0</td>
<td>Analogue amplifier bias control</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BUFIOEN</td>
<td>0</td>
<td>Unused input/output tie off buffer enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>1:0</td>
<td>VMIDSEL</td>
<td>00</td>
<td>Reference string impedance to VMID pin</td>
<td>Power Management</td>
</tr>
<tr>
<td>2 (02h)</td>
<td>8</td>
<td>ROUT1EN</td>
<td>0</td>
<td>ROUT1 output enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>LOUT1EN</td>
<td>0</td>
<td>LOUT1 output enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>SLEEP</td>
<td>0</td>
<td>0 = normal device operation</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>BOOSTENR</td>
<td>0</td>
<td>Right channel Input BOOST enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>BOOSTENL</td>
<td>0</td>
<td>Left channel Input BOOST enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>INPPGAENR</td>
<td>0</td>
<td>Right channel input PGA enable</td>
<td>Power Management</td>
</tr>
</tbody>
</table>

Figure 1: REGISTER BITS BY ADDRESS Table

- **WM8978**
- **PD, Rev 4.5, October 2011**
- **Wolfson Microelectronics**
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>INPGAENL</td>
<td>0</td>
<td></td>
<td>Left channel input PGA enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
<td>1 = enabled</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ADCENR</td>
<td>0</td>
<td></td>
<td>Enable ADC right channel:</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = ADC disabled</td>
<td>1 = ADC enabled</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ADCENL</td>
<td>0</td>
<td></td>
<td>Enable ADC left channel:</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = ADC disabled</td>
<td>1 = ADC enabled</td>
<td></td>
</tr>
<tr>
<td>3 (03h)</td>
<td>OUT4EN</td>
<td>0</td>
<td></td>
<td>OUT4 enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
<td>1 = enabled</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>OUT3EN</td>
<td>0</td>
<td></td>
<td>OUT3 enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
<td>1 = enabled</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OUT2EN</td>
<td>0</td>
<td></td>
<td>OUT2 enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
<td>1 = enabled</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ROUT2EN</td>
<td>0</td>
<td></td>
<td>ROUT2 enable</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
<td>1 = enabled</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RMIXEN</td>
<td>0</td>
<td></td>
<td>Right output channel mixer enable:</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
<td>1 = enabled</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LMIXEN</td>
<td>0</td>
<td></td>
<td>Left output channel mixer enable:</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = disabled</td>
<td>1 = enabled</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DACENR</td>
<td>0</td>
<td></td>
<td>Right channel DAC enable</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = DAC disabled</td>
<td>1 = DAC enabled</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>DACENL</td>
<td>0</td>
<td></td>
<td>Left channel DAC enable</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = DAC disabled</td>
<td>1 = DAC enabled</td>
<td></td>
</tr>
<tr>
<td>4 (04h)</td>
<td>BCP</td>
<td>BCLKL</td>
<td>0</td>
<td>BCLK polarity</td>
<td>Digital Audio Interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0=normal</td>
<td>1=inverted</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>LRP</td>
<td>0</td>
<td></td>
<td>right, left and i2s modes – LRCLK polarity</td>
<td>Digital Audio Interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = invert LRCLK polarity</td>
<td>0 = normal LRCLK polarity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DSP Mode – mode A/B select</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = MSB is available on 1st BCLK rising edge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>after LRC rising edge (mode B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = MSB is available on 2nd BCLK rising edge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>after LRC rising edge (mode A)</td>
<td></td>
</tr>
<tr>
<td>6:5</td>
<td>WL</td>
<td>0</td>
<td></td>
<td>Word length</td>
<td>Digital Audio Interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00=16 bits</td>
<td>01=20 bits</td>
<td>10=24 bits</td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
<td>REFER TO</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| | 4:3 | FMT | 10 | Audio interface Data Format Select:
| | | | | 00=Right Justified
| | | | | 01=Left Justified
| | | | | 10=I2S format
| | | | | 11= DSP/PCM mode | Digital Audio Interfaces |
| | 2 | DACLRSWAP | 0 | Controls whether DAC data appears in 'right' or 'left' phases of LRC clock:
| | | | | 0=DAC data appear in 'left' phase of LRC
| | | | | 1=DAC data appears in 'right' phase of LRC | Digital Audio Interfaces |
| | 1 | ADCLRSWAP | 0 | Controls whether ADC data appears in 'right' or 'left' phases of LRC clock:
| | | | | 0=ADC data appear in 'left' phase of LRC
| | | | | 1=ADC data appears in 'right' phase of LRC | Digital Audio Interfaces |
| | 0 | MONO | 0 | Selects between stereo and mono device operation:
| | | | | 0=Stereo device operation
| | | | | 1=Mono device operation. Data appears in 'left' phase of LRC | Digital Audio Interfaces |
| | 5 (05h) | | 000 | Reserved | |
| | 8:6 | WL8 | 0 | Companding Control 8-bit mode
| | | | | 0=off
| | | | | 1=device operates in 8-bit mode | Digital Audio Interfaces |
| | 4:3 | DAC_COMP | 00 | DAC companding
| | | | | 0=off (linear mode)
| | | | | 01=reserved
| | | | | 10=µ-law
| | | | | 11=A-law | Digital Audio Interfaces |
| | 2:1 | ADC_COMP | 00 | ADC companding
| | | | | 0=off (linear mode)
| | | | | 01=reserved
| | | | | 10=µ-law
| | | | | 11=A-law | Digital Audio Interfaces |
| | 0 | LOOPBACK | 0 | Digital loopback function
| | | | | 0=No loopback
| | | | | 1=Loopback enabled, ADC data output is fed directly into DAC data input. | Digital Audio Interfaces |
| | 6 (06h) | | 1 | Controls the source of the clock for all internal operation:
| | | | | 0=MCLK
| | | | | 1=PLL output | Digital Audio Interfaces |
| | 7:5 | MCLKDIV | 010 | Sets the scaling for either the MCLK or PLL clock output (under control of CLKSEL)
| | | | | 000=divide by 1
| | | | | 001=divide by 1.5
| | | | | 010=divide by 2
| | | | | 011=divide by 3
| | | | | 100=divide by 4
| | | | | 101=divide by 6
| | | | | 110=divide by 8
<p>| | | | | 111=divide by 12 | Digital Audio Interfaces |</p>
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
</table>
| | 4:2 | BCLKDIV | 000 | Configures the BCLK output frequency, for use when the chip is master over BCLK.
000=divide by 1 (BCLK=SYSCLK)
001=divide by 2 (BCLK=SYSCLK/2)
010=divide by 4
011=divide by 8
100=divide by 16
101=divide by 32
110=reserved
111=reserved | Digital Audio Interfaces |
| | 1 | Reserved | 0 | Reserved | |
| | 0 | MS | 0 | Sets the chip to be master over LRC and BCLK
0=BCLK and LRC clock are inputs
1=BCLK and LRC clock are outputs generated by the WM8978 (MASTER) | Digital Audio Interfaces |
| 7 (07h) | 8:4 | Reserved | 00000 | Reserved | |
| | 3:1 | SR | 000 | Approximate sample rate (configures the coefficients for the internal digital filters):
000=48kHz
001=32kHz
010=24kHz
011=16kHz
100=12kHz
101=8kHz
110-111=reserved | Audio Sample Rates |
| | 0 | SLOWCLKEN | 0 | Slow clock enable. Used for both the jack insert detect debounce circuit and the zero cross timeout.
0 = slow clock disabled
1 = slow clock enabled | Analogue Outputs |
| 8 (08h) | 8:6 | Reserved | 000 | Reserved | |
| | 5:4 | OPCLKDIV | 0 | PLL Output clock division ratio
00=divide by 1
01=divide by 2
10=divide by 3
11=divide by 4 | General Purpose Input/Output (GPIO) |
| | 3 | GPIO1POL | 0 | GPIO1 Polarity invert
0=Non inverted
1=Inverted | General Purpose Input/Output (GPIO) |
| | 2:0 | GPIO1SEL | 000 | CSB/GPIO1 pin function select:
000= input (CSB/jack detection: depending on MODE setting)
001= reserved
010=Temp ok
011=Amute active
100=PLL clk o/p
101=PLL lock
110=logic 1
111=logic 0 | General Purpose Input/Output (GPIO) |
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 (09h)</td>
<td>8:7</td>
<td>JD_VMID</td>
<td>00</td>
<td>[7] VMID_EN_0 [8] VMID_EN_1</td>
<td>Output Switching (Jack Detect)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>JD_EN</td>
<td>0</td>
<td>Jack Detection Enable 0=disabled 1=enabled</td>
<td>Output Switching (Jack Detect)</td>
</tr>
<tr>
<td></td>
<td>5:4</td>
<td>JD_SEL</td>
<td>00</td>
<td>Pin selected as jack detection input 00 = GPIO1 01 = GPIO2 10 = GPIO3 11 = Reserved</td>
<td>Output Switching (Jack Detect)</td>
</tr>
<tr>
<td>10 (0Ah)</td>
<td>8:7</td>
<td>SOFTMUTE</td>
<td>0</td>
<td>Softmute enable: 0=Disabled 1=Enabled</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td>5:4</td>
<td></td>
<td>00</td>
<td>Reserved</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>DACOSR128</td>
<td>0</td>
<td>DAC oversample rate select 0 = 64x (lowest power) 1 = 128x (best SNR)</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AMUTE</td>
<td>0</td>
<td>Automute enable 0 = Amute disabled 1 = Amute enabled</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>DACPOLR</td>
<td>0</td>
<td>Right DAC output polarity: 0 = non-inverted 1 = inverted (180 degrees phase shift)</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>DACPOLL</td>
<td>0</td>
<td>Left DAC output polarity: 0 = non-inverted 1 = inverted (180 degrees phase shift)</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td>11 (0Bh)</td>
<td>8</td>
<td>DACVU</td>
<td>N/A</td>
<td>DAC left and DAC right volume do not update until a 1 is written to DACVU (in reg 11 or 12)</td>
<td>Digital to Analogue Converter (DAC)</td>
</tr>
<tr>
<td></td>
<td>7:0</td>
<td>DACVOLL</td>
<td>11111111</td>
<td>Left DAC Digital Volume Control 0000 0000 = Digital Mute 0000 0001 = -127dB 0000 0010 = -126.5dB ... 0.5dB steps up to 1111 1111 = 0dB</td>
<td>Digital to Analogue Converter (DAC)</td>
</tr>
<tr>
<td>12 (0Ch)</td>
<td>8</td>
<td>DACVU</td>
<td>N/A</td>
<td>DAC left and DAC right volume do not update until a 1 is written to DACVU (in reg 11 or 12)</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td>7:0</td>
<td>DACVOLR</td>
<td>11111111</td>
<td>Right DAC Digital Volume Control 0000 0000 = Digital Mute 0000 0001 = -127dB 0000 0010 = -126.5dB ... 0.5dB steps up to 1111 1111 = 0dB</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
<td>REFER TO</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>13 (0Dh)</td>
<td>8</td>
<td>JD_EN1</td>
<td>0000</td>
<td>Output enabled when selected jack detection input is logic 1. [4]= OUT1_EN_1 [5]= OUT2_EN_1 [6]= OUT3_EN_1 [7]= OUT4_EN_1</td>
<td>Output Switching (Jack Detect)</td>
</tr>
<tr>
<td></td>
<td>7:4</td>
<td>JD_EN0</td>
<td>0000</td>
<td>Output enabled when selected jack detection input is logic 0. [0]= OUT1_EN_0 [1]= OUT2_EN_0 [2]= OUT3_EN_0 [3]= OUT4_EN_0</td>
<td>Output Switching (Jack Detect)</td>
</tr>
<tr>
<td>14 (0Eh)</td>
<td>8</td>
<td>HPFEN</td>
<td>1</td>
<td>High Pass Filter Enable 0=disabled 1=enabled</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>HPFAPP</td>
<td>0</td>
<td>Select audio mode or application mode 0=AUDIO mode (1st order, fc = ~3.7Hz) 1=APPLICATION mode (2nd order, fc = HPFCUT)</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>6:4</td>
<td>HPFCUT</td>
<td>000</td>
<td>Application mode cut-off frequency See Table 15 for details.</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>ADCOSR</td>
<td>128</td>
<td>ADC oversample rate select 0 = 64x (lowest power) 1 = 128x (best SNR)</td>
<td>Power Management</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>ADCRPOL</td>
<td>0</td>
<td>ADC right channel polarity adjust: 0=normal 1=inverted</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>ADCLPOL</td>
<td>0</td>
<td>ADC left channel polarity adjust: 0=normal 1=inverted</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td>15 (0Fh)</td>
<td>8</td>
<td>ADCVU</td>
<td>N/A</td>
<td>ADC left and ADC right volume do not update until a 1 is written to ADCVU (in reg 16 or 17)</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>7:0</td>
<td>ADCVOLL</td>
<td>11111111</td>
<td>Left ADC Digital Volume Control 0000 0000 = Digital Mute 0000 0001 = -127dB 0000 0010 = -126.5dB ... 0.5dB steps up to 1111 1111 = 0dB</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td>16 (10h)</td>
<td>8</td>
<td>ADCVU</td>
<td>N/A</td>
<td>ADC left and ADC right volume do not update until a 1 is written to ADCVU (in reg 16 or 17)</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>7:0</td>
<td>ADCVOLR</td>
<td>11111111</td>
<td>Right ADC Digital Volume Control 0000 0000 = Digital Mute 0000 0001 = -127dB 0000 0010 = -126.5dB ... 0.5dB steps up to 1111 1111 = 0dB</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
<td>REFER TO</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>18 (12h)</td>
<td>8</td>
<td>EQ3MODE</td>
<td>1</td>
<td>0 = Equaliser and 3D Enhancement applied to ADC path</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Equaliser and 3D Enhancement applied to DAC path</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>6:5</td>
<td></td>
<td>EQ1C</td>
<td></td>
<td>EQ Band 1 Cut-off Frequency:</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00=80Hz</td>
<td>01=105Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10=135Hz</td>
<td>11=175Hz</td>
<td></td>
</tr>
<tr>
<td>4:0</td>
<td></td>
<td>EQ1G</td>
<td>01100</td>
<td>EQ Band 1 Gain Control. See Table 36 for details.</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td>19 (13h)</td>
<td>8</td>
<td>EQ2BW</td>
<td>0</td>
<td>EQ Band 2 Bandwidth Control</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0=narrow bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=wide bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>6:5</td>
<td></td>
<td>EQ2C</td>
<td>01</td>
<td>EQ Band 2 Centre Frequency:</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00=230Hz</td>
<td>01=300Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10=385Hz</td>
<td>11=500Hz</td>
<td></td>
</tr>
<tr>
<td>4:0</td>
<td></td>
<td>EQ2G</td>
<td>01100</td>
<td>EQ Band 2 Gain Control. See Table 36 for details.</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td>20 (14h)</td>
<td>8</td>
<td>EQ3BW</td>
<td>0</td>
<td>EQ Band 3 Bandwidth Control</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0=narrow bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=wide bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>6:5</td>
<td></td>
<td>EQ3C</td>
<td>01</td>
<td>EQ Band 3 Centre Frequency:</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00=650Hz</td>
<td>01=850Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10=1.1kHz</td>
<td>11=1.4kHz</td>
<td></td>
</tr>
<tr>
<td>4:0</td>
<td></td>
<td>EQ3G</td>
<td>01100</td>
<td>EQ Band 3 Gain Control. See Table 36 for details.</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td>21 (15h)</td>
<td>8</td>
<td>EQ4BW</td>
<td>0</td>
<td>EQ Band 4 Bandwidth Control</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0=narrow bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1=wide bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>6:5</td>
<td></td>
<td>EQ4C</td>
<td>01</td>
<td>EQ Band 4 Centre Frequency:</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00=1.8kHz</td>
<td>01=2.4kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10=3.2kHz</td>
<td>11=4.1kHz</td>
<td></td>
</tr>
<tr>
<td>4:0</td>
<td></td>
<td>EQ4G</td>
<td>01100</td>
<td>EQ Band 4 Gain Control. See Table 36 for details.</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td>22 (16h)</td>
<td>8:7</td>
<td>EQ5C</td>
<td>01</td>
<td>EQ Band 5 Cut-off Frequency:</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00=5.3kHz</td>
<td>01=6.9kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10=9kHz</td>
<td>11=11.7kHz</td>
<td></td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
<td>REFER TO</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>4:0</td>
<td>0</td>
<td>EQ5G</td>
<td>01100</td>
<td>EQ Band 5 Gain Control. See Table 36 for details.</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td>24 (18h)</td>
<td>8</td>
<td>LIMEN</td>
<td>0</td>
<td>Enable the DAC digital limiter: 0=disabled 1=enabled</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:4</td>
<td>0</td>
<td>LIMDCY</td>
<td>0011</td>
<td>DAC Limiter Decay time (per 6dB gain change) for 44.1kHz sampling. Note that these will scale with sample rate: 0000=750us 0001=1.5ms 0010=3ms 0011=6ms 0100=12ms 0101=24ms 0110=48ms 0111=96ms 1000=192ms 1001=384ms 1010=768ms</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:0</td>
<td>0</td>
<td>LIMATK</td>
<td>0010</td>
<td>DAC Limiter Attack time (per 6dB gain change) for 44.1kHz sampling. Note that these will scale with sample rate: 0000=94us 0001=188us 0010=375us 0011=750us 0100=1.5ms 0101=3ms 0110=6ms 0111=12ms 1000=24ms 1001=48ms 1010=96ms 1011 to 1111=192ms</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 (19h)</td>
<td>8:7</td>
<td></td>
<td>00</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>6:4</td>
<td>0</td>
<td>LIMLVL</td>
<td>000</td>
<td>Programmable signal threshold level (determines level at which the DAC limiter starts to operate) 000=−1dB 001=−2dB 010=−3dB 011=−4dB 100=−5dB 101=−6dB</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:0</td>
<td>0</td>
<td>LIMBOOST</td>
<td>0000</td>
<td>DAC Limiter volume boost (can be used as a stand alone volume boost when LIMEN=0): 0000=0dB 0001=+1dB 0010=+2dB ... (1dB steps) 1011=+11dB 1100=+12dB 1101 to 1111=reserved</td>
<td>Output Signal Path</td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
<td>REFER TO</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>27 (1Bh)</td>
<td>8</td>
<td>NFU</td>
<td>0</td>
<td>Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>NFEN</td>
<td>0</td>
<td>Notch filter enable: 0=Disabled 1=Enabled</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td>28 (1Ch)</td>
<td>8</td>
<td>NFU</td>
<td>0</td>
<td>Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>6:0</td>
<td>NFA0[6:0]</td>
<td>0000000</td>
<td>Notch Filter a0 coefficient, bits [6:0]</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td>29 (1Dh)</td>
<td>8</td>
<td>NFU</td>
<td>0</td>
<td>Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td>30 (1Eh)</td>
<td>8</td>
<td>NFU</td>
<td>0</td>
<td>Notch filter update. The notch filter values used internally only update when one of the NFU bits is set high.</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td></td>
<td>6:0</td>
<td>NFA1[6:0]</td>
<td>0000000</td>
<td>Notch Filter a1 coefficient, bits [6:0]</td>
<td>Analogue to Digital Converter (ADC)</td>
</tr>
<tr>
<td>32 (20h)</td>
<td>8:7</td>
<td>ALCSEL</td>
<td>00</td>
<td>ALC function select: 00=ALC off 01=ALC right only 10=ALC left only 11=ALC both on</td>
<td>Input Limiter/ Automatic Level Control (ALC)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td>Input Limiter/ Automatic Level Control (ALC)</td>
</tr>
<tr>
<td></td>
<td>5:3</td>
<td>ALCMAXGAIN</td>
<td>111</td>
<td>Set Maximum Gain of PGA 111=+35.25dB 110=+29.25dB 101=+23.25dB 100=+17.25dB 011=+11.25dB 010=+5.25dB 001=0.75dB 000=-6.75dB</td>
<td>Input Limiter/ Automatic Level Control (ALC)</td>
</tr>
</tbody>
</table>
REGISTER ADDRESS

<table>
<thead>
<tr>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:0</td>
<td>ALCMINGAIN</td>
<td>000</td>
<td>Set minimum gain of PGA</td>
<td>Input Limiter/Automatic Level Control (ALC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000 = -12dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>001 = -6dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>010 = 0dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>011 = +6dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 = +12dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>101 = +18dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>110 = +24dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>111 = +30dB</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>ALCHLD</td>
<td>0000</td>
<td>ALC hold time before gain is increased.</td>
<td>Input Limiter/Automatic Level Control (ALC)</td>
</tr>
<tr>
<td>7:4</td>
<td></td>
<td></td>
<td>0000 = 0ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0001 = 2.67ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0010 = 5.33ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>... (time doubles with every step)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1010 or higher = 1.36s</td>
<td></td>
</tr>
<tr>
<td>3:0</td>
<td>ALC_LVL</td>
<td>1011</td>
<td>ALC target – sets signal level at ADC input</td>
<td>Input Limiter/Automatic Level Control (ALC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1111 : -1.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1110 : -1.5dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1101 : -3dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1100 : -4.5dB management... (-1.5dB steps)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0001 : -21dBFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000 : -22.5dBFS</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>ALCMODE</td>
<td>0</td>
<td>Determines the ALC mode of operation:</td>
<td>Input Limiter/Automatic Level Control (ALC)</td>
</tr>
<tr>
<td>7:4</td>
<td>ALCDCY [3:0]</td>
<td>0011</td>
<td>Decay (gain ramp-up) time (ALCMODE == 0)</td>
<td>Input Limiter/Automatic Level Control (ALC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per step</td>
<td>Per 6dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000</td>
<td>410us</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0001</td>
<td>820us</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0010</td>
<td>1.64ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1010 or higher</td>
<td>420ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1010</td>
<td>93ms</td>
</tr>
<tr>
<td>3:0</td>
<td>ALCATK</td>
<td>0010</td>
<td>ALC attack (gain ramp-down) time (ALCMODE == 1)</td>
<td>Input Limiter/Automatic Level Control (ALC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per step</td>
<td>Per 6dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000</td>
<td>90.8us</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0001</td>
<td>182us</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0010</td>
<td>363us</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1010</td>
<td>93ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1010</td>
<td>93ms</td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1010 or higher</td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td>ALC attack (gain ramp-down) time</td>
<td>(ALCMODE == 1)</td>
<td>Per step</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>… (time doubles with every step)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>NGEN</td>
<td>0</td>
<td>ALC Noise gate function enable</td>
<td>Input Limiter/ Automatic Level Control (ALC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = enable</td>
<td>0 = disable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2:0</td>
<td>NGTH</td>
<td>000</td>
<td>ALC Noise gate threshold:</td>
<td>Input Limiter/ Automatic Level Control (ALC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>000=-39dB</td>
<td>001=-45dB</td>
<td>010=-51dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>… (6dB steps)</td>
<td>111=-81dB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>PLLN[3:0]</td>
<td>1000</td>
<td>Integer (N) part of PLL input/output frequency ratio. Use values greater than 5 and less than 13.</td>
<td>Master Clock and Phase Locked Loop (PLL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>PLLK[23:18]</td>
<td>01100</td>
<td>Fractional (K) part of PLL1 input/output frequency ratio (treat as one 24-digit binary number).</td>
<td>Master Clock and Phase Locked Loop (PLL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8:6</td>
<td>PLLK[17:9]</td>
<td>010010011</td>
<td>Fractional (K) part of PLL1 input/output frequency ratio (treat as one 24-digit binary number).</td>
<td>Master Clock and Phase Locked Loop (PLL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8:0</td>
<td>PLLK[8:0]</td>
<td>011101001</td>
<td>Fractional (K) part of PLL1 input/output frequency ratio (treat as one 24-digit binary number).</td>
<td>Master Clock and Phase Locked Loop (PLL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8:0</td>
<td>DEPTH3D</td>
<td>0000</td>
<td>Stereo depth</td>
<td>3D Stereo Enhancement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0000: 0% (minimum 3D effect)</td>
<td>0001: 6.67%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>….</td>
<td>1110: 93.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1111: 100% (maximum 3D effect)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8:6</td>
<td>MUTERPGA2INV</td>
<td>0</td>
<td>Mute input to INVROUT2 mixer</td>
<td>Analogue Outputs</td>
</tr>
</tbody>
</table>

PD, Rev 4.5, October 2011
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>INVROUT2</td>
<td>0</td>
<td>Mute input to INVROUT2 mixer</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td>3:1</td>
<td>BEEPVOL</td>
<td>000</td>
<td>AUXR input to ROUT2 inverter gain</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000 = -15dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111 = +6dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>BEEPEN</td>
<td>0</td>
<td>0 = mute AUXR beep input</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = enable AUXR beep input</td>
<td></td>
</tr>
<tr>
<td>44 (2Ch)</td>
<td>8</td>
<td>MBVSEL</td>
<td>0</td>
<td>Microphone Bias Voltage Control</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = 0.9 * AVDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = 0.65 * AVDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>R2_2INPPGA</td>
<td>0</td>
<td>Connect R2 pin to right channel input PGA positive terminal.</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=R2 not connected to input PGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=R2 connected to input PGA amplifier positive terminal (constant input impedance).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>RIN2INPPGA</td>
<td>1</td>
<td>Connect RIN pin to right channel input PGA negative terminal.</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=RIN not connected to input PGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=RIN connected to right channel input PGA amplifier negative terminal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>RIP2INPPGA</td>
<td>1</td>
<td>Connect RIP pin to right channel input PGA amplifier positive terminal.</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = RIP not connected to input PGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = right channel input PGA amplifier positive terminal connected to RIP (constant input impedance)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>L2_2INPPGA</td>
<td>0</td>
<td>Connect L2 pin to left channel input PGA positive terminal.</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=L2 not connected to input PGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=L2 connected to input PGA amplifier positive terminal (constant input impedance).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>LIN2INPPGA</td>
<td>1</td>
<td>Connect LIN pin to left channel input PGA negative terminal.</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=LIN not connected to input PGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=LIN connected to input PGA amplifier negative terminal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>LIP2INPPGA</td>
<td>1</td>
<td>Connect LIP pin to left channel input PGA amplifier positive terminal.</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = LIP not connected to input PGA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = input PGA amplifier positive terminal connected to LIP (constant input impedance)</td>
<td></td>
</tr>
<tr>
<td>45 (2Dh)</td>
<td>8</td>
<td>INPPGAUPDATE</td>
<td>N/A</td>
<td>INPPGA and INPPGAVOLR volume do not update until a 1 is written to INPPGAUPDATE (in reg 45 or 46)</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>INPPGAZCL</td>
<td>0</td>
<td>Left channel input PGA zero cross enable:</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=Update gain when gain register changes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=Update gain on 1st zero cross after gain register write.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>INPPGAMUTEL</td>
<td>0</td>
<td>Mute control for left channel input PGA:</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=Input PGA not muted, normal operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=Input PGA muted (and disconnected from the following input BOOST stage).</td>
<td></td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
<td>REFER TO</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-----------------</td>
<td>---------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td>5:0</td>
<td>INPPGAVOLL</td>
<td>010000</td>
<td>Left channel input PGA volume</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000000 = -12dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000001 = -11.25db</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>010000 = 0dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111111 = +35.25dB</td>
<td></td>
</tr>
<tr>
<td>46 (2Eh)</td>
<td>8</td>
<td>INPPGAUPDATE</td>
<td>N/A</td>
<td>INPPGAVOLL and INPPGAVOLR volume do not update until a 1 is written to</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INPPGAUPDATE (in reg 45 or 46)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>INPPGAZCR</td>
<td>0</td>
<td>Right channel input PGA zero cross enable:</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=Update gain when gain register changes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=Update gain on 1st zero cross after gain register write.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>INPPGAMUTER</td>
<td>0</td>
<td>Mute control for right channel input PGA:</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0=Input PGA not muted, normal operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=Input PGA muted (and disconnected from the following input BOOST stage).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5:0</td>
<td>INPPGAVOLR</td>
<td>010000</td>
<td>Right channel input PGA volume</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000000 = -12dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000001 = -11.25db</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>010000 = 0dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111111 = +35.25dB</td>
<td></td>
</tr>
<tr>
<td>47 (2Fh)</td>
<td>8</td>
<td>PGABOOSTL</td>
<td>1</td>
<td>Boost enable for left channel input PGA:</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = PGA output has +0dB gain through input BOOST stage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = PGA output has +20dB gain through input BOOST stage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6:4</td>
<td>L2_2BOOSTVOL</td>
<td>000</td>
<td>Controls the L2 pin to the left channel input boost stage:</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000=Path disabled (disconnected)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001=-12dB gain through boost stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>010=-9dB gain through boost stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111=+6dB gain through boost stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2:0</td>
<td>AUXL2BOOSTVOL</td>
<td>000</td>
<td>Controls the auxiliary amplifier to the left channel input boost stage:</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000=Path disabled (disconnected)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001=-12dB gain through boost stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>010=-9dB gain through boost stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111=+6dB gain through boost stage</td>
<td></td>
</tr>
<tr>
<td>48 (30h)</td>
<td>8</td>
<td>PGABOOSTR</td>
<td>1</td>
<td>Boost enable for right channel input PGA:</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = PGA output has +0dB gain through input BOOST stage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = PGA output has +20dB gain through input BOOST stage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
<td>REFER TO</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>6:4</td>
<td>6:4</td>
<td>R2_2BOOSTVOL</td>
<td>000</td>
<td>Controls the R2 pin to the right channel input boost stage: 000=Path disabled (disconnected) 001=-12dB gain through boost stage 010=-9dB gain through boost stage … 111=+6dB gain through boost stage</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:0</td>
<td>2:0</td>
<td>AUXR2BOOSTVOL</td>
<td>000</td>
<td>Controls the auxiliary amplifier to the right channel input boost stage: 000=Path disabled (disconnected) 001=-12dB gain through boost stage 010=-9dB gain through boost stage … 111=+6dB gain through boost stage</td>
<td>Input Signal Path</td>
</tr>
<tr>
<td>49 (31h)</td>
<td>8:7</td>
<td>00</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>DACL2RMIX</td>
<td>0</td>
<td>Left DAC output to right output mixer 0 = not selected 1 = selected</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>DACR2LMIX</td>
<td>0</td>
<td>Right DAC output to left output mixer 0 = not selected 1 = selected</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>OUT4BOOST</td>
<td>0</td>
<td>0 = OUT4 output gain = -1; DC = AVDD / 2 1 = OUT4 output gain = +1.5 DC = 1.5 x AVDD / 2</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>OUT3BOOST</td>
<td>0</td>
<td>0 = OUT3 output gain = -1; DC = AVDD / 2 1 = OUT3 output gain = +1.5 DC = 1.5 x AVDD / 2</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>SPKBOOST</td>
<td>0</td>
<td>0 = speaker gain = -1; DC = AVDD / 2 1 = speaker gain = +1.5; DC = 1.5 x AVDD / 2</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>TSDEN</td>
<td>1</td>
<td>Thermal Shutdown Enable 0 : thermal shutdown disabled 1 : thermal shutdown enabled</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>VROI</td>
<td>0</td>
<td>VREF (AVDD/2 or 1.5xAVDD/2) to analogue output resistance 0: approx 1kΩ 1: approx 30 kΩ</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>50 (32h)</td>
<td>8:6</td>
<td>AUXLMIXVOL</td>
<td>000</td>
<td>Aux left channel input to left mixer volume control: 000 = -15dB 001 = -12dB … 101 = 0dB 110 = +3dB 111 = +6dB</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>AUXL2LMIX</td>
<td>0</td>
<td>Left Auxiliary input to left channel output mixer: 0 = not selected 1 = selected</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
<td>REFER TO</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>----------------</td>
<td>---------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>4:2</td>
<td></td>
<td>BYPLMIXVOL</td>
<td>000</td>
<td>Left bypass volume control to output channel mixer:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000 = -15dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001 = -12dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101 = 0dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110 = +3dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111 = +6dB</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>BYPL2LMIX</td>
<td>0</td>
<td>Left bypass path (from the left channel input boost output) to left output mixer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = not selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = selected</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>DACA2LMIX</td>
<td>1</td>
<td>Left DAC output to left output mixer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = not selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = selected</td>
<td></td>
</tr>
<tr>
<td>51 (33h)</td>
<td></td>
<td>AUXRMIXVOL</td>
<td>000</td>
<td>Aux right channel input to right mixer volume control:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000 = -15dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001 = -12dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101 = 0dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110 = +3dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111 = +6dB</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>AUXR2RMIX</td>
<td>0</td>
<td>Right Auxiliary input to right channel output mixer:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = not selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = selected</td>
<td></td>
</tr>
<tr>
<td>4:2</td>
<td></td>
<td>BYPRMIXVOL</td>
<td>000</td>
<td>Right bypass volume control to output channel mixer:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000 = -15dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001 = -12dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101 = 0dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110 = +3dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111 = +6dB</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>BYPR2RMIX</td>
<td>0</td>
<td>Right bypass path (from the right channel input boost output) to right output mixer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = not selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = selected</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>DACR2RMIX</td>
<td>1</td>
<td>Right DAC output to right output mixer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = not selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = selected</td>
<td></td>
</tr>
<tr>
<td>52 (34h)</td>
<td></td>
<td>HPVU</td>
<td>N/A</td>
<td>LOUT1 and ROUT1 volumes do not update until a 1 is written to HPVU (in reg 52 or 53)</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>LOUT1ZC</td>
<td>0</td>
<td>Headphone volume zero cross enable:</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Change gain on zero cross only</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Change gain immediately</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>LOUT1MUTE</td>
<td>0</td>
<td>Left headphone output mute:</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 = Normal operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Mute</td>
<td></td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>BIT</td>
<td>LABEL</td>
<td>DEFAULT</td>
<td>DESCRIPTION</td>
<td>REFER TO</td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>---</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| 5:0 | LOUT1VOL | 111001 | Left headphone output volume:
000000 = -57dB
...
11101 = 0dB
...
111111 = +6dB | Analogue Outputs |
| 53 (35h) | HPVU | N/A | LOUT1 and ROUT1 volumes do not update until
a 1 is written to HPVU (in reg 52 or 53) | Analogue Outputs |
| 7 | ROUT1ZC | 0 | Headphone volume zero cross enable:
1 = Change gain on zero cross only
0 = Change gain immediately | Analogue Outputs |
| 6 | ROUT1MUTE | 0 | Right headphone output mute:
0 = Normal operation
1 = Mute | Analogue Outputs |
| 5:0 | ROUT1VOL | 111001 | Right headphone output volume:
000000 = -57dB
...
11101 = 0dB
...
111111 = +6dB | Analogue Outputs |
| 54 (36h) | SPKVU | N/A | LOUT2 and ROUT2 volumes do not update until
a 1 is written to SPKVU (in reg 54 or 55) | Analogue Outputs |
| 7 | LOUT2ZC | 0 | Speaker volume zero cross enable:
1 = Change gain on zero cross only
0 = Change gain immediately | Analogue Outputs |
| 6 | LOUT2MUTE | 0 | Left speaker output mute:
0 = Normal operation
1 = Mute | Analogue Outputs |
| 5:0 | LOUT2VOL | 111001 | Left speaker output volume:
000000 = -57dB
...
11101 = 0dB
...
111111 = +6dB | Analogue Outputs |
| 55 (37h) | SPKVU | N/A | LOUT2 and ROUT2 volumes do not update until
a 1 is written to SPKVU (in reg 54 or 55) | Analogue Outputs |
| 7 | ROUT2ZC | 0 | Speaker volume zero cross enable:
1 = Change gain on zero cross only
0 = Change gain immediately | Analogue Outputs |
| 6 | ROUT2MUTE | 0 | Right speaker output mute:
0 = Normal operation
1 = Mute | Analogue Outputs |
| 5:0 | ROUT2VOL | 111001 | Right speaker output volume:
000000 = -57dB
...
11101 = 0dB
...
111111 = +6dB | Analogue Outputs |
| 56 (38h) | OUT3MUTE | 0 | Output stage outputs OUT3 mixer
0 = Output stage muted – drives out VMID. Can be used as VMID buffer in this mode. | Analogue Outputs |
<p>| 5:4 | MUTE | 00 | Reserved | |</p>
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>BIT</th>
<th>LABEL</th>
<th>DEFAULT</th>
<th>DESCRIPTION</th>
<th>REFER TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>OUT4_2OUT3</td>
<td>0</td>
<td>OUT4 mixer output to OUT3</td>
<td>0 = disabled</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1= enabled</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BYPL2OUT3</td>
<td>0</td>
<td>Left ADC input to OUT3</td>
<td>0 = disabled</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1= enabled</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>LMIX2OUT3</td>
<td>0</td>
<td>Left DAC mixer to OUT3</td>
<td>0 = disabled</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1= enabled</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>LDAC2OUT3</td>
<td>1</td>
<td>Left DAC output to OUT3</td>
<td>0 = disabled</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1= enabled</td>
<td></td>
</tr>
<tr>
<td>57 (39h)</td>
<td>8:7</td>
<td>00</td>
<td>Reserved</td>
<td></td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td>6</td>
<td>OUT4MUTE</td>
<td>0</td>
<td>Output stage outputs OUT4 mixer</td>
<td>0 = Output stage muted – drives out VMID. Can be used as VMID buffer in this mode.</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1= enabled</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>HALFSIG</td>
<td>0</td>
<td>OUT4 normal output</td>
<td>0=OUT4 normal output</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1=OUT4 attenuated by 6dB</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>LMIX2OUT4</td>
<td>0</td>
<td>Left DAC mixer to OUT4</td>
<td>0 = disabled</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1= enabled</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>LDAC2OUT4</td>
<td>0</td>
<td>Left DAC to OUT4</td>
<td>0 = disabled</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1= enabled</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BYPR2OUT4</td>
<td>0</td>
<td>Right ADC input to OUT4</td>
<td>0 = disabled</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1= enabled</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>RMIX2OUT4</td>
<td>0</td>
<td>Right DAC mixer to OUT4</td>
<td>0 = disabled</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1= enabled</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>RDAC2OUT4</td>
<td>1</td>
<td>Right DAC output to OUT4</td>
<td>0 = disabled</td>
<td>Analogue Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1= enabled</td>
<td></td>
</tr>
</tbody>
</table>
DIGITAL FILTER CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband</td>
<td>+/- 0.025dB</td>
<td>0</td>
<td>0.454fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6dB</td>
<td></td>
<td>0.5fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td></td>
<td></td>
<td>+/- 0.025</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Stopband</td>
<td>0.546fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>f > 0.546fs</td>
<td>-60</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Group Delay</td>
<td>21/fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC High Pass Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Pass Filter Corner Frequency</td>
<td>-3dB</td>
<td>3.7</td>
<td></td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.5dB</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.1dB</td>
<td>21.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband</td>
<td>+/- 0.035dB</td>
<td>0</td>
<td>0.454fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6dB</td>
<td></td>
<td>0.5fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td></td>
<td></td>
<td>+/- 0.035</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Stopband</td>
<td>0.546fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>f > 0.546fs</td>
<td>-55</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Group Delay</td>
<td>29/fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 70 Digital Filter Characteristics

TERMINOLOGY

1. **Stop Band Attenuation (dB)** – the degree to which the frequency spectrum is attenuated (outside audio band)
2. **Pass-band Ripple** – any variation of the frequency response in the pass-band region
DAC FILTER RESPONSES

Figure 48 DAC Digital Filter Frequency Response (128xOSR)

Figure 49 DAC Digital Filter Ripple (128xOSR)

Figure 50 DAC Digital Filter Frequency Response (64xOSR)

Figure 51 DAC Digital Filter Ripple (64xOSR)

ADC FILTER RESPONSES

Figure 52 ADC Digital Filter Frequency Response

Figure 53 ADC Digital Filter Ripple
HIGHPASS FILTER

The WM8978 has a selectable digital highpass filter in the ADC filter path. This filter has two modes, audio and applications. In audio mode the filter is a 1st order IIR with a cut-off of around 3.7Hz. In applications mode the filter is a 2nd order high pass filter with a selectable cut-off frequency.

Figure 54 ADC Highpass Filter Response, HPFAPP=0

Figure 55 ADC Highpass Filter Responses (48kHz), HPFAPP=1, all cut-off settings shown.

Figure 56 ADC Highpass Filter Responses (24kHz), HPFAPP=1, all cut-off settings shown.

Figure 57 ADC Highpass Filter Responses (12kHz), HPFAPP=1, all cut-off settings shown.
The WM8978 has a 5-band equaliser which can be applied to either the ADC path or the DAC path. The plots from Figure 58 to Figure 71 show the frequency responses of each filter with a sampling frequency of 48kHz, firstly showing the different cut-off/centre frequencies with a gain of ±12dB, and secondly a sweep of the gain from -12dB to +12dB for the lowest cut-off/centre frequency of each filter.

Figure 58 EQ Band 1 Low Frequency Shelf Filter Cut-offs
Figure 59 EQ Band 1 Gains for Lowest Cut-off Frequency
Figure 60 EQ Band 2 – Peak Filter Centre Frequencies, EQ2BW=0
Figure 61 EQ Band 2 – Peak Filter Gains for Lowest Cut-off Frequency, EQ2BW=0
Figure 62 EQ Band 2 – EQ2BW=0, EQ2BW=1
Figure 63 EQ Band 3 – Peak Filter Centre Frequencies, EQ3

Figure 64 EQ Band 3 – Peak Filter Gains for Lowest Cut-off Frequency, EQ3BW=0

Figure 65 EQ Band 3 – EQ3BW=0, EQ3BW=1
Figure 66 EQ Band 4 – Peak Filter Centre Frequencies, EQ3
Figure 67 EQ Band 4 – Peak Filter Gains for Lowest Cut-off Frequency, EQ4BW=0

Figure 68 EQ Band 4 – EQ3BW=0, EQ3BW=1

Figure 69 EQ Band 5 High Frequency Shelf Filter Cut-offs
Figure 70 EQ Band 5 Gains for Lowest Cut-off Frequency
Figure 71 shows the result of having the gain set on more than one channel simultaneously. The blue traces show each band (lowest cut-off/centre frequency) with ±12dB gain. The red traces show the cumulative effect of all bands with +12dB gain and all bands -12dB gain, with EqxBW=0 for the peak filters.

![Figure 71 Cumulative Frequency Boost/Cut](image-url)
APPLICATION INFORMATION

RECOMMENDED EXTERNAL COMPONENTS

Figure 72 Recommended External Component Diagram
PACKAGE DIAGRAM

FL: 32 PIN QFN PLASTIC PACKAGE 5 x 5 x 0.9 mm BODY, 0.50 mm LEAD PITCH

PACKAGE DIAGRAM

Symbols | Dimensions (mm) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.80</td>
</tr>
<tr>
<td>A1</td>
<td>0</td>
</tr>
<tr>
<td>A3</td>
<td>0.203</td>
</tr>
<tr>
<td>b</td>
<td>0.18</td>
</tr>
<tr>
<td>D</td>
<td>5.00 BSC</td>
</tr>
<tr>
<td>D2</td>
<td>3.30</td>
</tr>
<tr>
<td>E</td>
<td>5.00 BSC</td>
</tr>
<tr>
<td>E2</td>
<td>3.30</td>
</tr>
<tr>
<td>e</td>
<td>0.50 BSC</td>
</tr>
<tr>
<td>G</td>
<td>0.20</td>
</tr>
<tr>
<td>H</td>
<td>0.1</td>
</tr>
<tr>
<td>L</td>
<td>0.30</td>
</tr>
<tr>
<td>T</td>
<td>0.103</td>
</tr>
<tr>
<td>W</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Tolerances of Form and Position

aaa | 0.15 |
bbb | 0.10 |
ccc | 0.10 |

REF: JEDEC, MO-220, VARIATION VHHD-5.

NOTES:
1. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 mm AND 0.30 mm FROM TERMINAL TIP.
2. FALLS WITHIN JEDEC, MO-220, VARIATION VHHD-5.
3. ALL DIMENSIONS ARE IN MILLIMETRES.
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JEDEC JS-1 SPP-002.
5. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
6. REFER TO APPLICATION NOTE WAN_0118 FOR FURTHER INFORMATION REGARDING PCB FOOTPRINTS AND QFN PACKAGE SOLDERING.
7. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.
IMPORTANT NOTICE

Wolfson Microelectronics plc ("Wolfson") products and services are sold subject to Wolfson’s terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Wolfson warrants performance of its products to the specifications in effect at the date of shipment. Wolfson reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Wolfson to verify that the information is current.

Testing and other quality control techniques are utilised to the extent Wolfson deems necessary to support its warranty. Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimise risks associated with customer applications, the customer must use adequate design and operating safeguards to minimise inherent or procedural hazards. Wolfson is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Wolfson products. Wolfson is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Wolfson product.

Wolfson’s products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer’s own risk.

Wolfson does not grant any licence (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Wolfson covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party’s products or services does not constitute Wolfson’s approval, licence, warranty or endorsement thereof. Any third party trade marks contained in this document belong to the respective third party owner.

Reproduction of information from Wolfson datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Wolfson is not liable for any unauthorised alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Wolfson’s standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person’s own risk. Wolfson is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

ADDRESS

Wolfson Microelectronics plc
Westfield House
26 Westfield Road
Edinburgh
EH11 2QB
United Kingdom

Tel :: +44 (0)131 272 7000
Fax :: +44 (0)131 272 7001
Email :: sales@wolfsonmicro.com
REVISION HISTORY

<table>
<thead>
<tr>
<th>DATE</th>
<th>REV</th>
<th>ORIGINATOR</th>
<th>CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>26/09/11</td>
<td>4.5</td>
<td>JMacD</td>
<td>Order codes changed from WM8978GEFL/V and WM8978GEFL/RV to WM8978CGEFL/V and WM8978CGEFL/RV to reflect change to copper wire bonding.</td>
</tr>
<tr>
<td>26/09/11</td>
<td>4.5</td>
<td>JMacD</td>
<td>Package Diagram changed to DM101.A</td>
</tr>
</tbody>
</table>